<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>Γ-convergence Approximation of Fracture and Cavitation in Nonlinear Elasticity</dc:title>
<dc:creator>Henao, Duvan A.</dc:creator>
<dc:creator>Mora Corral, Carlos</dc:creator>
<dc:creator>Xu, Xianmin</dc:creator>
<dc:contributor>UAM. Departamento de Matemáticas</dc:contributor>
<dc:subject>Matemáticas</dc:subject>
<dc:description>The final publication is available at Springer via http://dx.doi.org/10.1007/s00205-014-0820-3</dc:description>
<dc:description>Our starting point is a variational model in nonlinear elasticity that allows for cavitation and fracture that was introduced by Henao and Mora-Corral (Arch Rational Mech Anal 197:619–655, 2010). The total energy to minimize is the sum of the elastic energy plus the energy produced by crack and surface formation. It is a free discontinuity problem, since the crack set and the set of new surface are unknowns of the problem. The expression of the functional involves a volume integral and two surface integrals, and this fact makes the problem numerically intractable. In this paper we propose an approximation (in the sense of Γ-convergence) by functionals involving only volume integrals, which makes a numerical approximation by finite elements feasible. This approximation has some similarities to the Modica–Mortola approximation of the perimeter and the Ambrosio–Tortorelli approximation of the Mumford–Shah functional, but with the added difficulties typical of nonlinear elasticity, in which the deformation is assumed to be one-to-one and orientation-preserving</dc:description>
<dc:description>D. Henao gratefully acknowledges the Chilean Ministry of Education’s support through the FONDE-CYT Iniciación project no. 11110011. C. Mora-Corral has been supported by Project MTM2011-28198 of the Spanish Ministry of Economy and Competitivity, the ERC Starting grant no. 307179, the “Ramón y Cajal” programme and the European Social Fund. X. Xu acknowledges the funding by NSFC 11001260</dc:description>
<dc:date>2014-12-05</dc:date>
<dc:type>journal article</dc:type>
<dc:type>info:eu-repo/semantics/acceptedVersion</dc:type>
<dc:identifier>Archive for Rational Mechanics and Analysis 216.15 (2015): 813-879</dc:identifier>
<dc:identifier>0003-9527 (print)</dc:identifier>
<dc:identifier>1432-0673 (online)</dc:identifier>
<dc:identifier>http://hdl.handle.net/10486/665481</dc:identifier>
<dc:identifier>10.1007/s00205-014-0820-3</dc:identifier>
<dc:identifier>813</dc:identifier>
<dc:identifier>15</dc:identifier>
<dc:identifier>879</dc:identifier>
<dc:identifier>216</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>open access</dc:rights>
<dc:format>application/pdf</dc:format>
<dc:publisher>Springer Verlag</dc:publisher>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<oaire:resource schemaLocation="http://namespace.openaire.eu/schema/oaire/ https://www.openaire.eu/schema/repo-lit/4.0/openaire.xsd">
<datacite:titles>
<datacite:title>Γ-convergence Approximation of Fracture and Cavitation in Nonlinear Elasticity</datacite:title>
</datacite:titles>
<datacite:creators>
<datacite:creator>
<datacite:creatorName>Henao, Duvan A.</datacite:creatorName>
</datacite:creator>
<datacite:creator>
<datacite:creatorName>Mora Corral, Carlos</datacite:creatorName>
<datacite:nameIdentifier nameIdentifierScheme="ORCID" schemeURI="https://orcid.org">0000-0002-2412-5508</datacite:nameIdentifier>
<datacite:affiliation>Universidad Autónoma de Madrid</datacite:affiliation>
</datacite:creator>
<datacite:creator>
<datacite:creatorName>Xu, Xianmin</datacite:creatorName>
</datacite:creator>
</datacite:creators>
<datacite:contributors>
<datacite:contributor contributorType="Other">
<datacite:contributorName>UAM. Departamento de Matemáticas</datacite:contributorName>
</datacite:contributor>
</datacite:contributors>
<datacite:subjects>
<datacite:subject>Matemáticas</datacite:subject>
</datacite:subjects>
<dc:description>The final publication is available at Springer via http://dx.doi.org/10.1007/s00205-014-0820-3</dc:description>
<dc:description>Our starting point is a variational model in nonlinear elasticity that allows for cavitation and fracture that was introduced by Henao and Mora-Corral (Arch Rational Mech Anal 197:619–655, 2010). The total energy to minimize is the sum of the elastic energy plus the energy produced by crack and surface formation. It is a free discontinuity problem, since the crack set and the set of new surface are unknowns of the problem. The expression of the functional involves a volume integral and two surface integrals, and this fact makes the problem numerically intractable. In this paper we propose an approximation (in the sense of Γ-convergence) by functionals involving only volume integrals, which makes a numerical approximation by finite elements feasible. This approximation has some similarities to the Modica–Mortola approximation of the perimeter and the Ambrosio–Tortorelli approximation of the Mumford–Shah functional, but with the added difficulties typical of nonlinear elasticity, in which the deformation is assumed to be one-to-one and orientation-preserving</dc:description>
<dc:description>D. Henao gratefully acknowledges the Chilean Ministry of Education’s support through the FONDE-CYT Iniciación project no. 11110011. C. Mora-Corral has been supported by Project MTM2011-28198 of the Spanish Ministry of Economy and Competitivity, the ERC Starting grant no. 307179, the “Ramón y Cajal” programme and the European Social Fund. X. Xu acknowledges the funding by NSFC 11001260</dc:description>
<datacite:dates>
<datacite:date dateType="Issued">2014-12-05</datacite:date>
</datacite:dates>
<oaire:resourceType resourceTypeGeneral="literature" uri="http://purl.org/coar/resource_type/c_6501">journal article</oaire:resourceType>
<oaire:version uri="http://purl.org/coar/version/c_be7fb7dd8ff6fe43">NA</oaire:version>
<datacite:identifier identifierType="HANDLE">http://hdl.handle.net/10486/665481</datacite:identifier>
<datacite:alternateIdentifiers>
<datacite:alternateIdentifier alternateIdentifierType="DOI">10.1007/s00205-014-0820-3</datacite:alternateIdentifier>
</datacite:alternateIdentifiers>
<datacite:relatedIdentifiers>
<datacite:relatedIdentifier relatedIdentifierType="ISSN" relationType="IsPartOf">0003-9527 (print)</datacite:relatedIdentifier>
<datacite:relatedIdentifier relatedIdentifierType="ISSN" relationType="IsPartOf">1432-0673 (online)</datacite:relatedIdentifier>
</datacite:relatedIdentifiers>
<dc:language>eng</dc:language>
<datacite:rights rightsURI="http://purl.org/coar/access_right/c_abf2">open access</datacite:rights>
<dc:format>application/pdf</dc:format>
<datacite:sizes>
<datacite:size>67 pag</datacite:size>
</datacite:sizes>
<dc:publisher>Springer Verlag</dc:publisher>
<oaire:file objectType="fulltext">https://repositorio.uam.es/bitstream/10486/665481/1/convergence_henao_arma_2015_ps.pdf</oaire:file>
</oaire:resource>
<?xml version="1.0" encoding="UTF-8" ?>
<metadata schemaLocation="http://www.lyncode.com/xoai http://www.lyncode.com/xsd/xoai.xsd">
<element name="dc">
<element name="contributor">
<element name="author">
<element name="none">
<field name="value">Henao, Duvan A.</field>
<field name="authority">2e453259-8ee7-4106-b118-2770ad13792b</field>
<field name="confidence">500</field>
<field name="value">Mora Corral, Carlos</field>
<field name="authority">264668</field>
<field name="confidence">500</field>
<field name="orcid_id">0000-0002-2412-5508</field>
<field name="value">Xu, Xianmin</field>
<field name="authority">b064e65f-736e-48f1-a629-649502ee0a19</field>
<field name="confidence">500</field>
</element>
</element>
<element name="other">
<element name="es_ES">
<field name="value">UAM. Departamento de Matemáticas</field>
</element>
</element>
</element>
<element name="date">
<element name="issued">
<element name="none">
<field name="value">2014-12-05</field>
</element>
</element>
</element>
<element name="identifier">
<element name="citation">
<element name="en_US">
<field name="value">Archive for Rational Mechanics and Analysis 216.15 (2015): 813-879</field>
</element>
</element>
<element name="issn">
<element name="es_ES">
<field name="value">0003-9527 (print)</field>
<field name="value">1432-0673 (online)</field>
</element>
</element>
<element name="uri">
<element name="none">
<field name="value">http://hdl.handle.net/10486/665481</field>
</element>
</element>
<element name="doi">
<element name="es_ES">
<field name="value">10.1007/s00205-014-0820-3</field>
</element>
</element>
<element name="publicationfirstpage">
<element name="es_ES">
<field name="value">813</field>
</element>
</element>
<element name="publicationissue">
<element name="es_ES">
<field name="value">15</field>
</element>
</element>
<element name="publicationlastpage">
<element name="es_ES">
<field name="value">879</field>
</element>
</element>
<element name="publicationvolume">
<element name="es_ES">
<field name="value">216</field>
</element>
</element>
</element>
<element name="description">
<element name="en_US">
<field name="value">The final publication is available at Springer via http://dx.doi.org/10.1007/s00205-014-0820-3</field>
</element>
<element name="abstract">
<element name="en_US">
<field name="value">Our starting point is a variational model in nonlinear elasticity that allows for cavitation and fracture that was introduced by Henao and Mora-Corral (Arch Rational Mech Anal 197:619–655, 2010). The total energy to minimize is the sum of the elastic energy plus the energy produced by crack and surface formation. It is a free discontinuity problem, since the crack set and the set of new surface are unknowns of the problem. The expression of the functional involves a volume integral and two surface integrals, and this fact makes the problem numerically intractable. In this paper we propose an approximation (in the sense of Γ-convergence) by functionals involving only volume integrals, which makes a numerical approximation by finite elements feasible. This approximation has some similarities to the Modica–Mortola approximation of the perimeter and the Ambrosio–Tortorelli approximation of the Mumford–Shah functional, but with the added difficulties typical of nonlinear elasticity, in which the deformation is assumed to be one-to-one and orientation-preserving</field>
</element>
</element>
<element name="sponsorship">
<element name="en_US">
<field name="value">D. Henao gratefully acknowledges the Chilean Ministry of Education’s support through the FONDE-CYT Iniciación project no. 11110011. C. Mora-Corral has been supported by Project MTM2011-28198 of the Spanish Ministry of Economy and Competitivity, the ERC Starting grant no. 307179, the “Ramón y Cajal” programme and the European Social Fund. X. Xu acknowledges the funding by NSFC 11001260</field>
</element>
</element>
</element>
<element name="format">
<element name="extent">
<element name="en">
<field name="value">67 pag</field>
</element>
</element>
<element name="mimetype">
<element name="en">
<field name="value">application/pdf</field>
</element>
</element>
</element>
<element name="language">
<element name="iso">
<element name="en">
<field name="value">eng</field>
</element>
</element>
</element>
<element name="publisher">
<element name="en_US">
<field name="value">Springer Verlag</field>
</element>
</element>
<element name="rights">
<element name="accessRights">
<element name="en">
<field name="value">open access</field>
</element>
</element>
</element>
<element name="title">
<element name="en_US">
<field name="value">Γ-convergence Approximation of Fracture and Cavitation in Nonlinear Elasticity</field>
</element>
</element>
<element name="type">
<element name="en">
<field name="value">journal article</field>
</element>
<element name="version">
<element name="en">
<field name="value">info:eu-repo/semantics/acceptedVersion</field>
</element>
</element>
</element>
<element name="subject">
<element name="eciencia">
<element name="es_ES">
<field name="value">Matemáticas</field>
</element>
</element>
</element>
<element name="facultadUAM">
<element name="none">
<field name="value">Facultad de Ciencias</field>
</element>
</element>
</element>
<element name="bundles">
<element name="bundle">
<field name="name">THUMBNAIL</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">convergence_henao_arma_2015_ps.pdf.jpg</field>
<field name="originalName">convergence_henao_arma_2015_ps.pdf.jpg</field>
<field name="description">Generated Thumbnail</field>
<field name="format">image/jpeg</field>
<field name="size">1159</field>
<field name="url">https://repositorio.uam.es/bitstream/10486/665481/3/convergence_henao_arma_2015_ps.pdf.jpg</field>
<field name="checksum">31baec8919213c8713a3d41e150775d6</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">3</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">ORIGINAL</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">convergence_henao_arma_2015_ps.pdf</field>
<field name="originalName">convergence_henao_arma_2015_ps.pdf</field>
<field name="format">application/pdf</field>
<field name="size">695825</field>
<field name="url">https://repositorio.uam.es/bitstream/10486/665481/1/convergence_henao_arma_2015_ps.pdf</field>
<field name="checksum">2cd6d66886e75a8d20faba6bccc3aca9</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">1</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">LICENSE</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">license.txt</field>
<field name="originalName">license.txt</field>
<field name="format">text/plain; charset=utf-8</field>
<field name="size">4105</field>
<field name="url">https://repositorio.uam.es/bitstream/10486/665481/2/license.txt</field>
<field name="checksum">c9c6ba57a9a0757a94b73bd12b549d9f</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">2</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">TEXT</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">convergence_henao_arma_2015_ps.pdf.txt</field>
<field name="originalName">convergence_henao_arma_2015_ps.pdf.txt</field>
<field name="description">Extracted text</field>
<field name="format">text/plain</field>
<field name="size">161457</field>
<field name="url">https://repositorio.uam.es/bitstream/10486/665481/4/convergence_henao_arma_2015_ps.pdf.txt</field>
<field name="checksum">397121756bee9ab214c1389f1bfae913</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">4</field>
</element>
</element>
</element>
</element>
<element name="others">
<field name="handle">10486/665481</field>
<field name="identifier">oai:repositorio.uam.es:10486/665481</field>
<field name="lastModifyDate">2022-05-05 09:32:09.007</field>
</element>
<element name="repository">
<field name="name">Universidad Autónoma de Madrid</field>
<field name="mail">biblosearchivo.biblioteca@uam.es</field>
</element>
<element name="license">
<field name="bin">RWwgYXV0b3IgZGVjbGFyYSBxdWUgZWwgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgbGEgcHJvcGllZGFkIGludGVsZWN0dWFsLCBvYmpldG8gZGUgbGEgcHJlc2VudGUgY2VzacOzbiwgZW4gcmVsYWNpw7NuIGNvbiBsYSBvYnJhIHF1ZSBhdXRvYXJjaGl2YSwgcXVlIMOpc3RhIGVzIHVuYSBvYnJhIG9yaWdpbmFsIHkgcXVlIG9zdGVudGEgbGEgY29uZGljacOzbiBkZSBhdXRvciBkZSBlc3RhIG9icmEuCgpFbiBjYXNvIGRlIHNlciBjb3RpdHVsYXIsIGVsIGF1dG9yIGRlY2xhcmEsIHF1ZSBubyBpbmZyaW5nZSwgZW4gdGFudG8gZW4gY3VhbnRvIGxlIHNlYSBwb3NpYmxlIHNhYmVyLCBsb3MgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGRlbCByZXN0byBkZSBsb3MgY29hdXRvcmVzLgoKQ29uIGVsIGZpbiBkZSBkYXIgbGEgbcOheGltYSBkaWZ1c2nDs24gYSBtaSBvYnJhIGNpdGFkYSBhIHRyYXbDqXMgZGUgZXN0ZSByZXBvc2l0b3JpbyBpbnN0aXR1Y2lvbmFsLCAgQ0VERSBhIGxhIFVuaXZlcnNpZGFkIEF1dMOzbm9tYSBkZSBNYWRyaWQsIGRlIGZvcm1hIGdyYXR1aXRhIHkgbm8gZXhjbHVzaXZhLCBwb3IgZWwgbcOheGltbyBwbGF6byBsZWdhbCB5IGNvbiDDoW1iaXRvIHVuaXZlcnNhbCwgcGFyYSBxdWUgcHVlZGEgc2VyIHV0aWxpemFkYSBkZSBmb3JtYSBsaWJyZSB5IGdyYXR1aXRhIHBvciB0b2RvcyBsb3MgdXN1YXJpb3MgZGVsIHJlcG9zaXRvcmlvIGxvcyBkZXJlY2hvcyBkZSByZXByb2R1Y2Npw7NuLCBkZSBkaXN0cmlidWNpw7NuLCBkZSBjb211bmljYWNpw7NuIHDDumJsaWNhLCBpbmNsdWlkbyBlbCBkZXJlY2hvIGRlIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbGVjdHLDs25pY2EsIHRhbCB5IGNvbW8gc2UgZGVzY3JpYmVuIGVuIGxhIExleSBkZSBQcm9waWVkYWQgSW50ZWxlY3R1YWwuIEVsIGRlcmVjaG8gZGUgdHJhbnNmb3JtYWNpw7NuIHNlIGNlZGUgYSBsb3Mgw7puaWNvcyBlZmVjdG9zIGRlIGxvIGRpc3B1ZXN0byBlbiBsYSBsZXRyYSAoYSkgZGVsIGFwYXJ0YWRvIHNpZ3VpZW50ZQoKTGEgY2VzacOzbiBzZSByZWFsaXphIGVuIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzOgoKRWwgcmVwb3NpdG9yaW8gbm8gYXN1bWUgbGEgdGl0dWxhcmlkYWQgZGUgbGEgb2JyYSwgcXVlIHNpZ3VlIGNvcnJlc3BvbmRpZW5kbyBhbCBhdXRvci4gU2luIGVtYmFyZ28sIGVzdGEgY2VzacOzbiBkZSBkZXJlY2hvcyBzb2JyZSBsYSBvYnJhIHBlcm1pdGlyw6EgYWwgcmVwb3NpdG9yaW86CgphLglUcmFuc2Zvcm1hcmxhLCBlbiBsYSBtZWRpZGEgZW4gcXVlIGVsbG8gc2VhIG5lY2VzYXJpbywgcGFyYSBhZGFwdGFybGFzIGEgY3VhbHF1aWVyIHRlY25vbG9nw61hICBzdXNjZXB0aWJsZSBkZSBpbmNvcnBvcmFjacOzbiBhIGludGVybmV0OyByZWFsaXphciBsYXMgYWRhcHRhY2lvbmVzIG5lY2VzYXJpYXMgcGFyYSBoYWNlciBwb3NpYmxlIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhIGVuIGZvcm1hdG9zIGVsZWN0csOzbmljb3MsIGFzw60gY29tbyBpbmNvcnBvcmFyIGxvcyBtZXRhZGF0b3MgbmVjZXNhcmlvcyBwYXJhIHJlYWxpemFyIGVsIHJlZ2lzdHJvIGRlIGxhIG9icmEsIGUgaW5jb3Jwb3JhciB0YW1iacOpbiDigJxtYXJjYXMgZGUgYWd1YeKAnSBvIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgZGUgc2VndXJpZGFkIG8gZGUgcHJvdGVjY2nDs24uCgpiLglSZXByb2R1Y2lybGEgZW4gdW4gc29wb3J0ZSAgZGlnaXRhbCBwYXJhIHN1IGluY29ycG9yYWNpw7NuIGEgdW5hIGJhc2UgZGUgZGF0b3MgZWxlY3Ryw7NuaWNhLCBpbmNsdXllbmRvIGVsIGRlcmVjaG8gZGUgcmVwcm9kdWNpciB5IGFsbWFjZW5hciBsYSBvYnJhIGVuIHNlcnZpZG9yZXMgYSBsb3MgZWZlY3RvcyBkZSBzZWd1cmlkYWQsIGRlIGNvbnNlcnZhY2nDs24sIHkgZGUgcHJlc2VydmFjacOzbiBkZWwgZm9ybWF0by4KCmMuCURpc3RyaWJ1aXIgYSBsb3MgdXN1YXJpb3MgY29waWFzIGVsZWN0csOzbmljYXMgZGUgbGEgb2JyYSBlbiB1biBzb3BvcnRlICBkaWdpdGFsLgoKZC4JU3UgY29tdW5pY2FjacOzbiBww7pibGljYSB5IHN1IHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBhIHRyYXbDqXMgZGUgdW4gYXJjaGl2byBhYmllcnRvIGluc3RpdHVjaW9uYWwsIGFjY2VzaWJsZSBkZSBtb2RvIGxpYnJlIHkgZ3JhdHVpdG8gYSB0cmF2w6lzIGRlIGludGVybmV0LgoKTGEgY2VzacOzbiBlcyBuby1leGNsdXNpdmEsIHBvciBsbyBxdWUgZWwgYXV0b3IgZXMgbGlicmUgZGUgY29tdW5pY2FyIHkgZGFyIHB1YmxpY2lkYWQgYSBsYSBvYnJhLCBlbiBlc3RhIHkgZW4gcG9zdGVyaW9yZXMgdmVyc2lvbmVzLCBhIHRyYXbDqXMgZGUgbG9zIG1lZGlvcyBxdWUgZXN0aW1lIG9wb3J0dW5vcy4KCkVsIGF1dG9yIGdhcmFudGl6YSBxdWUgZWwgY29udGVuaWRvIGRlIGxhL3Mgb2JyYS9zIG5vIGF0ZW50YSBjb250cmEgbG9zIGRlcmVjaG9zIGFsIGhvbm9yLCBhIGxhIGludGltaWRhZCB5IGEgbGEgaW1hZ2VuIGRlIHRlcmNlcm9zLiAKCkxhL3Mgb2JyYS9zIHNlIHBvbmRyw6EvbiBhIGRpc3Bvc2ljacOzbiBkZSBsb3MgdXN1YXJpb3MgcGFyYSBxdWUgaGFnYW4gZGUgZWxsYSB1biB1c28ganVzdG8geSByZXNwZXR1b3NvIGNvbiBsb3MgZGVyZWNob3MgZGVsIGF1dG9yLCBzZWfDum4gbG8gcGVybWl0aWRvIHBvciBsYSBsZWdpc2xhY2nDs24gYXBsaWNhYmxlLCB5IGNvbiBmaW5lcyBkZSBlc3R1ZGlvLCBpbnZlc3RpZ2FjacOzbiwgbyBjdWFscXVpZXIgb3RybyBmaW4gbMOtY2l0by4gRWwgdXNvIHBvc3RlcmlvciwgbcOhcyBhbGzDoSBkZSBsYSBjb3BpYSBwcml2YWRhLCByZXF1ZXJpcsOhIHF1ZSBzZSBjaXRlIGxhIGZ1ZW50ZSB5IHNlIHJlY29ub3pjYSBsYSBhdXRvcsOtYSwgcXVlIG5vIHNlIG9idGVuZ2EgYmVuZWZpY2lvIGNvbWVyY2lhbCwgeSBxdWUgbm8gc2UgcmVhbGljZW4gb2JyYXMgZGVyaXZhZGFzLiAgICAKCkxhIFVuaXZlcnNpZGFkIGRlYmVyw6EgaW5mb3JtYXIgYSBsb3MgdXN1YXJpb3MgZGVsIGFyY2hpdm8gc29icmUgbG9zIHVzb3MgcGVybWl0aWRvcywgeSBubyBnYXJhbnRpemEgbmkgYXN1bWUgcmVzcG9uc2FiaWxpZGFkIGFsZ3VuYSBwb3Igb3RyYXMgZm9ybWFzIGVuIHF1ZSBsb3MgdXN1YXJpb3MgaGFnYW4gdW4gdXNvIHBvc3RlcmlvciBkZSBsYXMgb2JyYXMgbm8gY29uZm9ybWUgY29uIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLgoKTGEgVW5pdmVyc2lkYWQgbm8gcmV2aXNhcsOhIGVsIGNvbnRlbmlkbyBkZSBsYXMgb2JyYXMsIHF1ZSBlbiB0b2RvIGNhc28gcGVybWFuZWNlcsOhIGJham8gbGEgcmVzcG9uc2FiaWxpZGFkIGV4Y2x1c2l2YSBkZWwgYXV0b3IuIAoKTGEgVW5pdmVyc2lkYWQgbm8gZXN0YXLDoSBvYmxpZ2FkYSBhICBlamVyY2l0YXIgYWNjaW9uZXMgbGVnYWxlcyBlbiBub21icmUgZGVsIGF1dG9yIGVuIGVsIHN1cHVlc3RvIGRlIGluZnJhY2Npb25lcyBhIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBkZXJpdmFkb3MgZGVsIGRlcMOzc2l0byB5IGFyY2hpdm8gZGUgbGFzIG9icmFzLgoKRWwgYXV0b3IgcG9kcsOhIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBsYSBvYnJhIGRlbCByZXBvc2l0b3JpbyBwb3IgY2F1c2EganVzdGlmaWNhZGEuIEEgdGFsIGZpbiBkZWJlcsOhIHBvbmVyc2UgZW4gY29udGFjdG8gY29uIGVsIGRpcmVjdG9yIGRlIGxhIEJpYmxpb3RlY2EgeSBBcmNoaXZvIGRlIGxhIFVBTS4gQXNpbWlzbW8sIGVsIHJlcG9zaXRvcmlvIHBvZHLDoSByZXRpcmFyIGxhIG9icmEsIHByZXZpYSBub3RpZmljYWNpw7NuIGFsIGF1dG9yLCBlbiBzdXB1ZXN0b3Mgc3VmaWNpZW50ZW1lbnRlIGp1c3RpZmljYWRvcywgbyBlbiBjYXNvIGRlICByZWNsYW1hY2lvbmVzIGRlIHRlcmNlcm9zLgoKRWwgYXV0b3Igc2Vyw6EgY29udmVuaWVudGVtZW50ZSBub3RpZmljYWRvIGRlIGN1YWxxdWllciByZWNsYW1hY2nDs24gcXVlIHB1ZWRhbiBmb3JtdWxhciB0ZXJjZXJhcyBwZXJzb25hcyBlbiByZWxhY2nDs24gY29uIGxhIG9icmEgeSwgZW4gcGFydGljdWxhciwgZGUgcmVjbGFtYWNpb25lcyByZWxhdGl2YXMgYSBsb3MgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIHNvYnJlIGVsbGEuCg==</field>
</element>
</metadata>