<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>Γ -convergence of polyconvex functionals involving s-fractional gradients to their local counterparts</dc:title>
<dc:creator>Bellido, José C.</dc:creator>
<dc:creator>Cueto, Javier</dc:creator>
<dc:creator>Mora Corral, Carlos</dc:creator>
<dc:contributor>UAM. Departamento de Matemáticas</dc:contributor>
<dc:subject>Nonlocal Diffusion</dc:subject>
<dc:subject>Dynamic Fracture</dc:subject>
<dc:subject>Crack Propagation</dc:subject>
<dc:subject>Riesz fractional gradient</dc:subject>
<dc:subject>Localization of nonlocal gradient</dc:subject>
<dc:subject>Bessel spaces</dc:subject>
<dc:subject>Polyconvex functionals</dc:subject>
<dc:subject>Matemáticas</dc:subject>
<dc:description>This is a post-peer-review, pre-copyedit version of an article published in Calculus of Variations and Partial Differential Equations. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00526-020-01868-5</dc:description>
<dc:description>In this paper we study localization properties of the Riesz s-fractional gradient Dsu of a vectorial function u as s ↗ 1. The natural space to work with s-fractional gradients is the Bessel space Hs,p for 0 < s < 1 and 1 < p < ∞. This space converges, in a precise sense, to the Sobolev space W1,p when s ↗ 1. We prove that the s-fractional gradient Dsu of a function u in W1,p converges strongly to the classical gradient Du. We also show a weak compactness result in W1,p for sequences of functions us with bounded Lp norm of Dsus as s ↗ 1. Moreover, the weak convergence of Dsus in Lp implies the weak continuity of its minors, which allows us to prove a semicontinuity result of polyconvex functionals involving s-fractional gradients defined in Hs,p to their local counterparts defined in W1,p. The full -convergence of the functionals is achieved only for the case p > n</dc:description>
<dc:description>This work has been supported by the Agencia Estatal de Investigación of the Spanish Ministry Research and Innovation, through projects MTM2017-83740-P (J.C.B. and J.C.), and MTM2017-85934-C3-2-P (C.M.-C.)</dc:description>
<dc:date>2020-11-24</dc:date>
<dc:type>journal article</dc:type>
<dc:type>info:eu-repo/semantics/acceptedVersion</dc:type>
<dc:identifier>Calculus of Variations and Partial Differential Equations 60.1 (2021): 7</dc:identifier>
<dc:identifier>0944-2669 (print)</dc:identifier>
<dc:identifier>1432-0835 (online)</dc:identifier>
<dc:identifier>http://hdl.handle.net/10486/700467</dc:identifier>
<dc:identifier>10.1007/s00526-020-01868-5</dc:identifier>
<dc:identifier>7-1</dc:identifier>
<dc:identifier>1</dc:identifier>
<dc:identifier>7-28</dc:identifier>
<dc:identifier>60</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>Gobierno de España. MTM2017-83740-P</dc:relation>
<dc:relation>Gobierno de España. MTM2017-85934-C3-2-P</dc:relation>
<dc:rights>open access</dc:rights>
<dc:format>application/pdf</dc:format>
<dc:publisher>Springer</dc:publisher>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<oaire:resource schemaLocation="http://namespace.openaire.eu/schema/oaire/ https://www.openaire.eu/schema/repo-lit/4.0/openaire.xsd">
<datacite:titles>
<datacite:title>Γ -convergence of polyconvex functionals involving s-fractional gradients to their local counterparts</datacite:title>
</datacite:titles>
<datacite:creators>
<datacite:creator>
<datacite:creatorName>Bellido, José C.</datacite:creatorName>
</datacite:creator>
<datacite:creator>
<datacite:creatorName>Cueto, Javier</datacite:creatorName>
</datacite:creator>
<datacite:creator>
<datacite:creatorName>Mora Corral, Carlos</datacite:creatorName>
<datacite:nameIdentifier nameIdentifierScheme="ORCID" schemeURI="https://orcid.org">0000-0002-2412-5508</datacite:nameIdentifier>
<datacite:affiliation>Universidad Autónoma de Madrid</datacite:affiliation>
</datacite:creator>
</datacite:creators>
<datacite:contributors>
<datacite:contributor contributorType="Other">
<datacite:contributorName>UAM. Departamento de Matemáticas</datacite:contributorName>
</datacite:contributor>
</datacite:contributors>
<datacite:subjects>
<datacite:subject>Nonlocal Diffusion</datacite:subject>
<datacite:subject>Dynamic Fracture</datacite:subject>
<datacite:subject>Crack Propagation</datacite:subject>
<datacite:subject>Riesz fractional gradient</datacite:subject>
<datacite:subject>Localization of nonlocal gradient</datacite:subject>
<datacite:subject>Bessel spaces</datacite:subject>
<datacite:subject>Polyconvex functionals</datacite:subject>
<datacite:subject>Matemáticas</datacite:subject>
</datacite:subjects>
<dc:description>This is a post-peer-review, pre-copyedit version of an article published in Calculus of Variations and Partial Differential Equations. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00526-020-01868-5</dc:description>
<dc:description>In this paper we study localization properties of the Riesz s-fractional gradient Dsu of a vectorial function u as s ↗ 1. The natural space to work with s-fractional gradients is the Bessel space Hs,p for 0 < s < 1 and 1 < p < ∞. This space converges, in a precise sense, to the Sobolev space W1,p when s ↗ 1. We prove that the s-fractional gradient Dsu of a function u in W1,p converges strongly to the classical gradient Du. We also show a weak compactness result in W1,p for sequences of functions us with bounded Lp norm of Dsus as s ↗ 1. Moreover, the weak convergence of Dsus in Lp implies the weak continuity of its minors, which allows us to prove a semicontinuity result of polyconvex functionals involving s-fractional gradients defined in Hs,p to their local counterparts defined in W1,p. The full -convergence of the functionals is achieved only for the case p > n</dc:description>
<dc:description>This work has been supported by the Agencia Estatal de Investigación of the Spanish Ministry Research and Innovation, through projects MTM2017-83740-P (J.C.B. and J.C.), and MTM2017-85934-C3-2-P (C.M.-C.)</dc:description>
<datacite:dates>
<datacite:date dateType="Issued">2020-11-24</datacite:date>
</datacite:dates>
<oaire:resourceType resourceTypeGeneral="literature" uri="http://purl.org/coar/resource_type/c_6501">journal article</oaire:resourceType>
<oaire:version uri="http://purl.org/coar/version/c_be7fb7dd8ff6fe43">NA</oaire:version>
<datacite:identifier identifierType="HANDLE">http://hdl.handle.net/10486/700467</datacite:identifier>
<datacite:alternateIdentifiers>
<datacite:alternateIdentifier alternateIdentifierType="DOI">10.1007/s00526-020-01868-5</datacite:alternateIdentifier>
</datacite:alternateIdentifiers>
<datacite:relatedIdentifiers>
<datacite:relatedIdentifier relatedIdentifierType="ISSN" relationType="IsPartOf">0944-2669 (print)</datacite:relatedIdentifier>
<datacite:relatedIdentifier relatedIdentifierType="ISSN" relationType="IsPartOf">1432-0835 (online)</datacite:relatedIdentifier>
</datacite:relatedIdentifiers>
<dc:language>eng</dc:language>
<datacite:rights rightsURI="http://purl.org/coar/access_right/c_abf2">open access</datacite:rights>
<dc:format>application/pdf</dc:format>
<datacite:sizes>
<datacite:size>28 pag.</datacite:size>
</datacite:sizes>
<dc:publisher>Springer</dc:publisher>
<oaire:file objectType="fulltext">https://repositorio.uam.es/bitstream/10486/700467/1/r-convergende_bellido_CVPDE_2021_ps.pdf</oaire:file>
</oaire:resource>
<?xml version="1.0" encoding="UTF-8" ?>
<metadata schemaLocation="http://www.lyncode.com/xoai http://www.lyncode.com/xsd/xoai.xsd">
<element name="dc">
<element name="contributor">
<element name="author">
<element name="none">
<field name="value">Bellido, José C.</field>
<field name="authority">c267c055-8215-4d8a-9e19-0cadccfc3d54</field>
<field name="confidence">500</field>
<field name="value">Cueto, Javier</field>
<field name="authority">5dc046c9-9740-48b8-ac0b-f7536280918e</field>
<field name="confidence">500</field>
<field name="value">Mora Corral, Carlos</field>
<field name="authority">264668</field>
<field name="confidence">500</field>
<field name="orcid_id">0000-0002-2412-5508</field>
</element>
</element>
<element name="other">
<element name="es_ES">
<field name="value">UAM. Departamento de Matemáticas</field>
</element>
</element>
</element>
<element name="date">
<element name="issued">
<element name="none">
<field name="value">2020-11-24</field>
</element>
</element>
</element>
<element name="identifier">
<element name="citation">
<element name="en_US">
<field name="value">Calculus of Variations and Partial Differential Equations 60.1 (2021): 7</field>
</element>
</element>
<element name="issn">
<element name="es_ES">
<field name="value">0944-2669 (print)</field>
<field name="value">1432-0835 (online)</field>
</element>
</element>
<element name="uri">
<element name="none">
<field name="value">http://hdl.handle.net/10486/700467</field>
</element>
</element>
<element name="doi">
<element name="es_ES">
<field name="value">10.1007/s00526-020-01868-5</field>
</element>
</element>
<element name="publicationfirstpage">
<element name="es_ES">
<field name="value">7-1</field>
</element>
</element>
<element name="publicationissue">
<element name="es_ES">
<field name="value">1</field>
</element>
</element>
<element name="publicationlastpage">
<element name="es_ES">
<field name="value">7-28</field>
</element>
</element>
<element name="publicationvolume">
<element name="es_ES">
<field name="value">60</field>
</element>
</element>
</element>
<element name="description">
<element name="en_US">
<field name="value">This is a post-peer-review, pre-copyedit version of an article published in Calculus of Variations and Partial Differential Equations. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00526-020-01868-5</field>
</element>
<element name="abstract">
<element name="en_US">
<field name="value">In this paper we study localization properties of the Riesz s-fractional gradient Dsu of a vectorial function u as s ↗ 1. The natural space to work with s-fractional gradients is the Bessel space Hs,p for 0 < s < 1 and 1 < p < ∞. This space converges, in a precise sense, to the Sobolev space W1,p when s ↗ 1. We prove that the s-fractional gradient Dsu of a function u in W1,p converges strongly to the classical gradient Du. We also show a weak compactness result in W1,p for sequences of functions us with bounded Lp norm of Dsus as s ↗ 1. Moreover, the weak convergence of Dsus in Lp implies the weak continuity of its minors, which allows us to prove a semicontinuity result of polyconvex functionals involving s-fractional gradients defined in Hs,p to their local counterparts defined in W1,p. The full -convergence of the functionals is achieved only for the case p > n</field>
</element>
</element>
<element name="sponsorship">
<element name="en_US">
<field name="value">This work has been supported by the Agencia Estatal de Investigación of the Spanish Ministry Research and Innovation, through projects MTM2017-83740-P (J.C.B. and J.C.), and MTM2017-85934-C3-2-P (C.M.-C.)</field>
</element>
</element>
</element>
<element name="format">
<element name="extent">
<element name="es_ES">
<field name="value">28 pag.</field>
</element>
</element>
<element name="mimetype">
<element name="es_ES">
<field name="value">application/pdf</field>
</element>
</element>
</element>
<element name="language">
<element name="iso">
<element name="es_ES">
<field name="value">eng</field>
</element>
</element>
</element>
<element name="publisher">
<element name="en_US">
<field name="value">Springer</field>
</element>
</element>
<element name="relation">
<element name="projectID">
<element name="es_ES">
<field name="value">Gobierno de España. MTM2017-83740-P</field>
<field name="value">Gobierno de España. MTM2017-85934-C3-2-P</field>
</element>
</element>
</element>
<element name="rights">
<element name="accessRights">
<element name="es_ES">
<field name="value">open access</field>
</element>
</element>
</element>
<element name="subject">
<element name="other">
<element name="en_US">
<field name="value">Nonlocal Diffusion</field>
<field name="value">Dynamic Fracture</field>
<field name="value">Crack Propagation</field>
<field name="value">Riesz fractional gradient</field>
<field name="value">Localization of nonlocal gradient</field>
<field name="value">Bessel spaces</field>
<field name="value">Polyconvex functionals</field>
</element>
</element>
<element name="eciencia">
<element name="es_ES">
<field name="value">Matemáticas</field>
</element>
</element>
</element>
<element name="title">
<element name="en_US">
<field name="value">Γ -convergence of polyconvex functionals involving s-fractional gradients to their local counterparts</field>
</element>
</element>
<element name="type">
<element name="es_ES">
<field name="value">journal article</field>
</element>
<element name="version">
<element name="es_ES">
<field name="value">info:eu-repo/semantics/acceptedVersion</field>
</element>
</element>
</element>
<element name="authorUAM">
<element name="none">
<field name="value">Mora Corral, Carlos (264668)</field>
</element>
</element>
<element name="facultadUAM">
<element name="none">
<field name="value">Facultad de Ciencias</field>
</element>
</element>
</element>
<element name="bundles">
<element name="bundle">
<field name="name">TEXT</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">r-convergende_bellido_CVPDE_2021_ps.pdf.txt</field>
<field name="originalName">r-convergende_bellido_CVPDE_2021_ps.pdf.txt</field>
<field name="description">Extracted text</field>
<field name="format">text/plain</field>
<field name="size">64797</field>
<field name="url">https://repositorio.uam.es/bitstream/10486/700467/3/r-convergende_bellido_CVPDE_2021_ps.pdf.txt</field>
<field name="checksum">c8fd9f89390ca7048b4833d8309d3b15</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">3</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">THUMBNAIL</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">r-convergende_bellido_CVPDE_2021_ps.pdf.jpg</field>
<field name="originalName">r-convergende_bellido_CVPDE_2021_ps.pdf.jpg</field>
<field name="description">IM Thumbnail</field>
<field name="format">image/jpeg</field>
<field name="size">1529</field>
<field name="url">https://repositorio.uam.es/bitstream/10486/700467/4/r-convergende_bellido_CVPDE_2021_ps.pdf.jpg</field>
<field name="checksum">62e5aab9a1155b872908256f37817b64</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">4</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">ORIGINAL</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">r-convergende_bellido_CVPDE_2021_ps.pdf</field>
<field name="originalName">r-convergende_bellido_CVPDE_2021_ps.pdf</field>
<field name="format">application/pdf</field>
<field name="size">1954858</field>
<field name="url">https://repositorio.uam.es/bitstream/10486/700467/1/r-convergende_bellido_CVPDE_2021_ps.pdf</field>
<field name="checksum">8ebde6d895c51369ba077a78c4bae607</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">1</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">LICENSE</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">license.txt</field>
<field name="originalName">license.txt</field>
<field name="format">text/plain; charset=utf-8</field>
<field name="size">4105</field>
<field name="url">https://repositorio.uam.es/bitstream/10486/700467/2/license.txt</field>
<field name="checksum">c9c6ba57a9a0757a94b73bd12b549d9f</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">2</field>
</element>
</element>
</element>
</element>
<element name="others">
<field name="handle">10486/700467</field>
<field name="identifier">oai:repositorio.uam.es:10486/700467</field>
<field name="lastModifyDate">2022-05-05 09:36:33.648</field>
</element>
<element name="repository">
<field name="name">Universidad Autónoma de Madrid</field>
<field name="mail">biblosearchivo.biblioteca@uam.es</field>
</element>
<element name="license">
<field name="bin">RWwgYXV0b3IgZGVjbGFyYSBxdWUgZWwgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgbGEgcHJvcGllZGFkIGludGVsZWN0dWFsLCBvYmpldG8gZGUgbGEgcHJlc2VudGUgY2VzacOzbiwgZW4gcmVsYWNpw7NuIGNvbiBsYSBvYnJhIHF1ZSBhdXRvYXJjaGl2YSwgcXVlIMOpc3RhIGVzIHVuYSBvYnJhIG9yaWdpbmFsIHkgcXVlIG9zdGVudGEgbGEgY29uZGljacOzbiBkZSBhdXRvciBkZSBlc3RhIG9icmEuCgpFbiBjYXNvIGRlIHNlciBjb3RpdHVsYXIsIGVsIGF1dG9yIGRlY2xhcmEsIHF1ZSBubyBpbmZyaW5nZSwgZW4gdGFudG8gZW4gY3VhbnRvIGxlIHNlYSBwb3NpYmxlIHNhYmVyLCBsb3MgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGRlbCByZXN0byBkZSBsb3MgY29hdXRvcmVzLgoKQ29uIGVsIGZpbiBkZSBkYXIgbGEgbcOheGltYSBkaWZ1c2nDs24gYSBtaSBvYnJhIGNpdGFkYSBhIHRyYXbDqXMgZGUgZXN0ZSByZXBvc2l0b3JpbyBpbnN0aXR1Y2lvbmFsLCAgQ0VERSBhIGxhIFVuaXZlcnNpZGFkIEF1dMOzbm9tYSBkZSBNYWRyaWQsIGRlIGZvcm1hIGdyYXR1aXRhIHkgbm8gZXhjbHVzaXZhLCBwb3IgZWwgbcOheGltbyBwbGF6byBsZWdhbCB5IGNvbiDDoW1iaXRvIHVuaXZlcnNhbCwgcGFyYSBxdWUgcHVlZGEgc2VyIHV0aWxpemFkYSBkZSBmb3JtYSBsaWJyZSB5IGdyYXR1aXRhIHBvciB0b2RvcyBsb3MgdXN1YXJpb3MgZGVsIHJlcG9zaXRvcmlvIGxvcyBkZXJlY2hvcyBkZSByZXByb2R1Y2Npw7NuLCBkZSBkaXN0cmlidWNpw7NuLCBkZSBjb211bmljYWNpw7NuIHDDumJsaWNhLCBpbmNsdWlkbyBlbCBkZXJlY2hvIGRlIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbGVjdHLDs25pY2EsIHRhbCB5IGNvbW8gc2UgZGVzY3JpYmVuIGVuIGxhIExleSBkZSBQcm9waWVkYWQgSW50ZWxlY3R1YWwuIEVsIGRlcmVjaG8gZGUgdHJhbnNmb3JtYWNpw7NuIHNlIGNlZGUgYSBsb3Mgw7puaWNvcyBlZmVjdG9zIGRlIGxvIGRpc3B1ZXN0byBlbiBsYSBsZXRyYSAoYSkgZGVsIGFwYXJ0YWRvIHNpZ3VpZW50ZQoKTGEgY2VzacOzbiBzZSByZWFsaXphIGVuIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzOgoKRWwgcmVwb3NpdG9yaW8gbm8gYXN1bWUgbGEgdGl0dWxhcmlkYWQgZGUgbGEgb2JyYSwgcXVlIHNpZ3VlIGNvcnJlc3BvbmRpZW5kbyBhbCBhdXRvci4gU2luIGVtYmFyZ28sIGVzdGEgY2VzacOzbiBkZSBkZXJlY2hvcyBzb2JyZSBsYSBvYnJhIHBlcm1pdGlyw6EgYWwgcmVwb3NpdG9yaW86CgphLglUcmFuc2Zvcm1hcmxhLCBlbiBsYSBtZWRpZGEgZW4gcXVlIGVsbG8gc2VhIG5lY2VzYXJpbywgcGFyYSBhZGFwdGFybGFzIGEgY3VhbHF1aWVyIHRlY25vbG9nw61hICBzdXNjZXB0aWJsZSBkZSBpbmNvcnBvcmFjacOzbiBhIGludGVybmV0OyByZWFsaXphciBsYXMgYWRhcHRhY2lvbmVzIG5lY2VzYXJpYXMgcGFyYSBoYWNlciBwb3NpYmxlIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhIGVuIGZvcm1hdG9zIGVsZWN0csOzbmljb3MsIGFzw60gY29tbyBpbmNvcnBvcmFyIGxvcyBtZXRhZGF0b3MgbmVjZXNhcmlvcyBwYXJhIHJlYWxpemFyIGVsIHJlZ2lzdHJvIGRlIGxhIG9icmEsIGUgaW5jb3Jwb3JhciB0YW1iacOpbiDigJxtYXJjYXMgZGUgYWd1YeKAnSBvIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgZGUgc2VndXJpZGFkIG8gZGUgcHJvdGVjY2nDs24uCgpiLglSZXByb2R1Y2lybGEgZW4gdW4gc29wb3J0ZSAgZGlnaXRhbCBwYXJhIHN1IGluY29ycG9yYWNpw7NuIGEgdW5hIGJhc2UgZGUgZGF0b3MgZWxlY3Ryw7NuaWNhLCBpbmNsdXllbmRvIGVsIGRlcmVjaG8gZGUgcmVwcm9kdWNpciB5IGFsbWFjZW5hciBsYSBvYnJhIGVuIHNlcnZpZG9yZXMgYSBsb3MgZWZlY3RvcyBkZSBzZWd1cmlkYWQsIGRlIGNvbnNlcnZhY2nDs24sIHkgZGUgcHJlc2VydmFjacOzbiBkZWwgZm9ybWF0by4KCmMuCURpc3RyaWJ1aXIgYSBsb3MgdXN1YXJpb3MgY29waWFzIGVsZWN0csOzbmljYXMgZGUgbGEgb2JyYSBlbiB1biBzb3BvcnRlICBkaWdpdGFsLgoKZC4JU3UgY29tdW5pY2FjacOzbiBww7pibGljYSB5IHN1IHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBhIHRyYXbDqXMgZGUgdW4gYXJjaGl2byBhYmllcnRvIGluc3RpdHVjaW9uYWwsIGFjY2VzaWJsZSBkZSBtb2RvIGxpYnJlIHkgZ3JhdHVpdG8gYSB0cmF2w6lzIGRlIGludGVybmV0LgoKTGEgY2VzacOzbiBlcyBuby1leGNsdXNpdmEsIHBvciBsbyBxdWUgZWwgYXV0b3IgZXMgbGlicmUgZGUgY29tdW5pY2FyIHkgZGFyIHB1YmxpY2lkYWQgYSBsYSBvYnJhLCBlbiBlc3RhIHkgZW4gcG9zdGVyaW9yZXMgdmVyc2lvbmVzLCBhIHRyYXbDqXMgZGUgbG9zIG1lZGlvcyBxdWUgZXN0aW1lIG9wb3J0dW5vcy4KCkVsIGF1dG9yIGdhcmFudGl6YSBxdWUgZWwgY29udGVuaWRvIGRlIGxhL3Mgb2JyYS9zIG5vIGF0ZW50YSBjb250cmEgbG9zIGRlcmVjaG9zIGFsIGhvbm9yLCBhIGxhIGludGltaWRhZCB5IGEgbGEgaW1hZ2VuIGRlIHRlcmNlcm9zLiAKCkxhL3Mgb2JyYS9zIHNlIHBvbmRyw6EvbiBhIGRpc3Bvc2ljacOzbiBkZSBsb3MgdXN1YXJpb3MgcGFyYSBxdWUgaGFnYW4gZGUgZWxsYSB1biB1c28ganVzdG8geSByZXNwZXR1b3NvIGNvbiBsb3MgZGVyZWNob3MgZGVsIGF1dG9yLCBzZWfDum4gbG8gcGVybWl0aWRvIHBvciBsYSBsZWdpc2xhY2nDs24gYXBsaWNhYmxlLCB5IGNvbiBmaW5lcyBkZSBlc3R1ZGlvLCBpbnZlc3RpZ2FjacOzbiwgbyBjdWFscXVpZXIgb3RybyBmaW4gbMOtY2l0by4gRWwgdXNvIHBvc3RlcmlvciwgbcOhcyBhbGzDoSBkZSBsYSBjb3BpYSBwcml2YWRhLCByZXF1ZXJpcsOhIHF1ZSBzZSBjaXRlIGxhIGZ1ZW50ZSB5IHNlIHJlY29ub3pjYSBsYSBhdXRvcsOtYSwgcXVlIG5vIHNlIG9idGVuZ2EgYmVuZWZpY2lvIGNvbWVyY2lhbCwgeSBxdWUgbm8gc2UgcmVhbGljZW4gb2JyYXMgZGVyaXZhZGFzLiAgICAKCkxhIFVuaXZlcnNpZGFkIGRlYmVyw6EgaW5mb3JtYXIgYSBsb3MgdXN1YXJpb3MgZGVsIGFyY2hpdm8gc29icmUgbG9zIHVzb3MgcGVybWl0aWRvcywgeSBubyBnYXJhbnRpemEgbmkgYXN1bWUgcmVzcG9uc2FiaWxpZGFkIGFsZ3VuYSBwb3Igb3RyYXMgZm9ybWFzIGVuIHF1ZSBsb3MgdXN1YXJpb3MgaGFnYW4gdW4gdXNvIHBvc3RlcmlvciBkZSBsYXMgb2JyYXMgbm8gY29uZm9ybWUgY29uIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLgoKTGEgVW5pdmVyc2lkYWQgbm8gcmV2aXNhcsOhIGVsIGNvbnRlbmlkbyBkZSBsYXMgb2JyYXMsIHF1ZSBlbiB0b2RvIGNhc28gcGVybWFuZWNlcsOhIGJham8gbGEgcmVzcG9uc2FiaWxpZGFkIGV4Y2x1c2l2YSBkZWwgYXV0b3IuIAoKTGEgVW5pdmVyc2lkYWQgbm8gZXN0YXLDoSBvYmxpZ2FkYSBhICBlamVyY2l0YXIgYWNjaW9uZXMgbGVnYWxlcyBlbiBub21icmUgZGVsIGF1dG9yIGVuIGVsIHN1cHVlc3RvIGRlIGluZnJhY2Npb25lcyBhIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBkZXJpdmFkb3MgZGVsIGRlcMOzc2l0byB5IGFyY2hpdm8gZGUgbGFzIG9icmFzLgoKRWwgYXV0b3IgcG9kcsOhIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBsYSBvYnJhIGRlbCByZXBvc2l0b3JpbyBwb3IgY2F1c2EganVzdGlmaWNhZGEuIEEgdGFsIGZpbiBkZWJlcsOhIHBvbmVyc2UgZW4gY29udGFjdG8gY29uIGVsIGRpcmVjdG9yIGRlIGxhIEJpYmxpb3RlY2EgeSBBcmNoaXZvIGRlIGxhIFVBTS4gQXNpbWlzbW8sIGVsIHJlcG9zaXRvcmlvIHBvZHLDoSByZXRpcmFyIGxhIG9icmEsIHByZXZpYSBub3RpZmljYWNpw7NuIGFsIGF1dG9yLCBlbiBzdXB1ZXN0b3Mgc3VmaWNpZW50ZW1lbnRlIGp1c3RpZmljYWRvcywgbyBlbiBjYXNvIGRlICByZWNsYW1hY2lvbmVzIGRlIHRlcmNlcm9zLgoKRWwgYXV0b3Igc2Vyw6EgY29udmVuaWVudGVtZW50ZSBub3RpZmljYWRvIGRlIGN1YWxxdWllciByZWNsYW1hY2nDs24gcXVlIHB1ZWRhbiBmb3JtdWxhciB0ZXJjZXJhcyBwZXJzb25hcyBlbiByZWxhY2nDs24gY29uIGxhIG9icmEgeSwgZW4gcGFydGljdWxhciwgZGUgcmVjbGFtYWNpb25lcyByZWxhdGl2YXMgYSBsb3MgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIHNvYnJlIGVsbGEuCg==</field>
</element>
</metadata>