Logotipo de HISPANA
Logotipo del Ministerio de Cultura
  • Què és Hispana?
  • Cerca
  • Directori de col·leccions
  • Contacte
  • va
    • Español
    • Euskara
    • English
    • Galego
    • Català
    • Valencià
Está en:  › Dades de registre
Linked Open Data
Γ -convergence of polyconvex functionals involving s-fractional gradients to their local counterparts
Identificadores del recurso
Calculus of Variations and Partial Differential Equations 60.1 (2021): 7
0944-2669 (print)
1432-0835 (online)
http://hdl.handle.net/10486/700467
10.1007/s00526-020-01868-5
7-1
1
7-28
60
Procedència
(Biblos-e Archivo)

Fitxa

Títol:
Γ -convergence of polyconvex functionals involving s-fractional gradients to their local counterparts
Tema:
Nonlocal Diffusion
Dynamic Fracture
Crack Propagation
Riesz fractional gradient
Localization of nonlocal gradient
Bessel spaces
Polyconvex functionals
Matemáticas
Descripció:
This is a post-peer-review, pre-copyedit version of an article published in Calculus of Variations and Partial Differential Equations. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00526-020-01868-5
In this paper we study localization properties of the Riesz s-fractional gradient Dsu of a vectorial function u as s ↗ 1. The natural space to work with s-fractional gradients is the Bessel space Hs,p for 0 < s < 1 and 1 < p < ∞. This space converges, in a precise sense, to the Sobolev space W1,p when s ↗ 1. We prove that the s-fractional gradient Dsu of a function u in W1,p converges strongly to the classical gradient Du. We also show a weak compactness result in W1,p for sequences of functions us with bounded Lp norm of Dsus as s ↗ 1. Moreover, the weak convergence of Dsus in Lp implies the weak continuity of its minors, which allows us to prove a semicontinuity result of polyconvex functionals involving s-fractional gradients defined in Hs,p to their local counterparts defined in W1,p. The full -convergence of the functionals is achieved only for the case p > n
This work has been supported by the Agencia Estatal de Investigación of the Spanish Ministry Research and Innovation, through projects MTM2017-83740-P (J.C.B. and J.C.), and MTM2017-85934-C3-2-P (C.M.-C.)
Idioma:
English
Relació:
Gobierno de España. MTM2017-83740-P
Gobierno de España. MTM2017-85934-C3-2-P
Autor/Productor:
Bellido, José C.
Cueto, Javier
Mora Corral, Carlos
Editor:
Springer
Otros colaboradores/productores:
UAM. Departamento de Matemáticas
Drets:
open access
Data:
2020-11-24
Tipo de recurso:
journal article
info:eu-repo/semantics/acceptedVersion
Format:
application/pdf

oai_dc

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">

    1. <dc:title>Γ -convergence of polyconvex functionals involving s-fractional gradients to their local counterparts</dc:title>

    2. <dc:creator>Bellido, José C.</dc:creator>

    3. <dc:creator>Cueto, Javier</dc:creator>

    4. <dc:creator>Mora Corral, Carlos</dc:creator>

    5. <dc:contributor>UAM. Departamento de Matemáticas</dc:contributor>

    6. <dc:subject>Nonlocal Diffusion</dc:subject>

    7. <dc:subject>Dynamic Fracture</dc:subject>

    8. <dc:subject>Crack Propagation</dc:subject>

    9. <dc:subject>Riesz fractional gradient</dc:subject>

    10. <dc:subject>Localization of nonlocal gradient</dc:subject>

    11. <dc:subject>Bessel spaces</dc:subject>

    12. <dc:subject>Polyconvex functionals</dc:subject>

    13. <dc:subject>Matemáticas</dc:subject>

    14. <dc:description>This is a post-peer-review, pre-copyedit version of an article published in Calculus of Variations and Partial Differential Equations. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00526-020-01868-5</dc:description>

    15. <dc:description>In this paper we study localization properties of the Riesz s-fractional gradient Dsu of a vectorial function u as s ↗ 1. The natural space to work with s-fractional gradients is the Bessel space Hs,p for 0 < s < 1 and 1 < p < ∞. This space converges, in a precise sense, to the Sobolev space W1,p when s ↗ 1. We prove that the s-fractional gradient Dsu of a function u in W1,p converges strongly to the classical gradient Du. We also show a weak compactness result in W1,p for sequences of functions us with bounded Lp norm of Dsus as s ↗ 1. Moreover, the weak convergence of Dsus in Lp implies the weak continuity of its minors, which allows us to prove a semicontinuity result of polyconvex functionals involving s-fractional gradients defined in Hs,p to their local counterparts defined in W1,p. The full -convergence of the functionals is achieved only for the case p > n</dc:description>

    16. <dc:description>This work has been supported by the Agencia Estatal de Investigación of the Spanish Ministry Research and Innovation, through projects MTM2017-83740-P (J.C.B. and J.C.), and MTM2017-85934-C3-2-P (C.M.-C.)</dc:description>

    17. <dc:date>2020-11-24</dc:date>

    18. <dc:type>journal article</dc:type>

    19. <dc:type>info:eu-repo/semantics/acceptedVersion</dc:type>

    20. <dc:identifier>Calculus of Variations and Partial Differential Equations 60.1 (2021): 7</dc:identifier>

    21. <dc:identifier>0944-2669 (print)</dc:identifier>

    22. <dc:identifier>1432-0835 (online)</dc:identifier>

    23. <dc:identifier>http://hdl.handle.net/10486/700467</dc:identifier>

    24. <dc:identifier>10.1007/s00526-020-01868-5</dc:identifier>

    25. <dc:identifier>7-1</dc:identifier>

    26. <dc:identifier>1</dc:identifier>

    27. <dc:identifier>7-28</dc:identifier>

    28. <dc:identifier>60</dc:identifier>

    29. <dc:language>eng</dc:language>

    30. <dc:relation>Gobierno de España. MTM2017-83740-P</dc:relation>

    31. <dc:relation>Gobierno de España. MTM2017-85934-C3-2-P</dc:relation>

    32. <dc:rights>open access</dc:rights>

    33. <dc:format>application/pdf</dc:format>

    34. <dc:publisher>Springer</dc:publisher>

    </oai_dc:dc>

oai_openaire

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <oaire:resource schemaLocation="http://namespace.openaire.eu/schema/oaire/ https://www.openaire.eu/schema/repo-lit/4.0/openaire.xsd">

    1. <datacite:titles>

      1. <datacite:title>Γ -convergence of polyconvex functionals involving s-fractional gradients to their local counterparts</datacite:title>

      </datacite:titles>

    2. <datacite:creators>

      1. <datacite:creator>

        1. <datacite:creatorName>Bellido, José C.</datacite:creatorName>

        </datacite:creator>

      2. <datacite:creator>

        1. <datacite:creatorName>Cueto, Javier</datacite:creatorName>

        </datacite:creator>

      3. <datacite:creator>

        1. <datacite:creatorName>Mora Corral, Carlos</datacite:creatorName>

        2. <datacite:nameIdentifier nameIdentifierScheme="ORCID" schemeURI="https://orcid.org">0000-0002-2412-5508</datacite:nameIdentifier>

        3. <datacite:affiliation>Universidad Autónoma de Madrid</datacite:affiliation>

        </datacite:creator>

      </datacite:creators>

    3. <datacite:contributors>

      1. <datacite:contributor contributorType="Other">

        1. <datacite:contributorName>UAM. Departamento de Matemáticas</datacite:contributorName>

        </datacite:contributor>

      </datacite:contributors>

    4. <datacite:subjects>

      1. <datacite:subject>Nonlocal Diffusion</datacite:subject>

      2. <datacite:subject>Dynamic Fracture</datacite:subject>

      3. <datacite:subject>Crack Propagation</datacite:subject>

      4. <datacite:subject>Riesz fractional gradient</datacite:subject>

      5. <datacite:subject>Localization of nonlocal gradient</datacite:subject>

      6. <datacite:subject>Bessel spaces</datacite:subject>

      7. <datacite:subject>Polyconvex functionals</datacite:subject>

      8. <datacite:subject>Matemáticas</datacite:subject>

      </datacite:subjects>

    5. <dc:description>This is a post-peer-review, pre-copyedit version of an article published in Calculus of Variations and Partial Differential Equations. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00526-020-01868-5</dc:description>

    6. <dc:description>In this paper we study localization properties of the Riesz s-fractional gradient Dsu of a vectorial function u as s ↗ 1. The natural space to work with s-fractional gradients is the Bessel space Hs,p for 0 < s < 1 and 1 < p < ∞. This space converges, in a precise sense, to the Sobolev space W1,p when s ↗ 1. We prove that the s-fractional gradient Dsu of a function u in W1,p converges strongly to the classical gradient Du. We also show a weak compactness result in W1,p for sequences of functions us with bounded Lp norm of Dsus as s ↗ 1. Moreover, the weak convergence of Dsus in Lp implies the weak continuity of its minors, which allows us to prove a semicontinuity result of polyconvex functionals involving s-fractional gradients defined in Hs,p to their local counterparts defined in W1,p. The full -convergence of the functionals is achieved only for the case p > n</dc:description>

    7. <dc:description>This work has been supported by the Agencia Estatal de Investigación of the Spanish Ministry Research and Innovation, through projects MTM2017-83740-P (J.C.B. and J.C.), and MTM2017-85934-C3-2-P (C.M.-C.)</dc:description>

    8. <datacite:dates>

      1. <datacite:date dateType="Issued">2020-11-24</datacite:date>

      </datacite:dates>

    9. <oaire:resourceType resourceTypeGeneral="literature" uri="http://purl.org/coar/resource_type/c_6501">journal article</oaire:resourceType>

    10. <oaire:version uri="http://purl.org/coar/version/c_be7fb7dd8ff6fe43">NA</oaire:version>

    11. <datacite:identifier identifierType="HANDLE">http://hdl.handle.net/10486/700467</datacite:identifier>

    12. <datacite:alternateIdentifiers>

      1. <datacite:alternateIdentifier alternateIdentifierType="DOI">10.1007/s00526-020-01868-5</datacite:alternateIdentifier>

      </datacite:alternateIdentifiers>

    13. <datacite:relatedIdentifiers>

      1. <datacite:relatedIdentifier relatedIdentifierType="ISSN" relationType="IsPartOf">0944-2669 (print)</datacite:relatedIdentifier>

      2. <datacite:relatedIdentifier relatedIdentifierType="ISSN" relationType="IsPartOf">1432-0835 (online)</datacite:relatedIdentifier>

      </datacite:relatedIdentifiers>

    14. <dc:language>eng</dc:language>

    15. <datacite:rights rightsURI="http://purl.org/coar/access_right/c_abf2">open access</datacite:rights>

    16. <dc:format>application/pdf</dc:format>

    17. <datacite:sizes>

      1. <datacite:size>28 pag.</datacite:size>

      </datacite:sizes>

    18. <dc:publisher>Springer</dc:publisher>

    19. <oaire:file objectType="fulltext">https://repositorio.uam.es/bitstream/10486/700467/1/r-convergende_bellido_CVPDE_2021_ps.pdf</oaire:file>

    </oaire:resource>

xoai

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <metadata schemaLocation="http://www.lyncode.com/xoai http://www.lyncode.com/xsd/xoai.xsd">

    1. <element name="dc">

      1. <element name="contributor">

        1. <element name="author">

          1. <element name="none">

            1. <field name="value">Bellido, José C.</field>

            2. <field name="authority">c267c055-8215-4d8a-9e19-0cadccfc3d54</field>

            3. <field name="confidence">500</field>

            4. <field name="orcid_id" />
            5. <field name="value">Cueto, Javier</field>

            6. <field name="authority">5dc046c9-9740-48b8-ac0b-f7536280918e</field>

            7. <field name="confidence">500</field>

            8. <field name="orcid_id" />
            9. <field name="value">Mora Corral, Carlos</field>

            10. <field name="authority">264668</field>

            11. <field name="confidence">500</field>

            12. <field name="orcid_id">0000-0002-2412-5508</field>

            </element>

          </element>

        2. <element name="other">

          1. <element name="es_ES">

            1. <field name="value">UAM. Departamento de Matemáticas</field>

            </element>

          </element>

        </element>

      2. <element name="date">

        1. <element name="issued">

          1. <element name="none">

            1. <field name="value">2020-11-24</field>

            </element>

          </element>

        </element>

      3. <element name="identifier">

        1. <element name="citation">

          1. <element name="en_US">

            1. <field name="value">Calculus of Variations and Partial Differential Equations 60.1 (2021): 7</field>

            </element>

          </element>

        2. <element name="issn">

          1. <element name="es_ES">

            1. <field name="value">0944-2669 (print)</field>

            2. <field name="value">1432-0835 (online)</field>

            </element>

          </element>

        3. <element name="uri">

          1. <element name="none">

            1. <field name="value">http://hdl.handle.net/10486/700467</field>

            </element>

          </element>

        4. <element name="doi">

          1. <element name="es_ES">

            1. <field name="value">10.1007/s00526-020-01868-5</field>

            </element>

          </element>

        5. <element name="publicationfirstpage">

          1. <element name="es_ES">

            1. <field name="value">7-1</field>

            </element>

          </element>

        6. <element name="publicationissue">

          1. <element name="es_ES">

            1. <field name="value">1</field>

            </element>

          </element>

        7. <element name="publicationlastpage">

          1. <element name="es_ES">

            1. <field name="value">7-28</field>

            </element>

          </element>

        8. <element name="publicationvolume">

          1. <element name="es_ES">

            1. <field name="value">60</field>

            </element>

          </element>

        </element>

      4. <element name="description">

        1. <element name="en_US">

          1. <field name="value">This is a post-peer-review, pre-copyedit version of an article published in Calculus of Variations and Partial Differential Equations. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00526-020-01868-5</field>

          </element>

        2. <element name="abstract">

          1. <element name="en_US">

            1. <field name="value">In this paper we study localization properties of the Riesz s-fractional gradient Dsu of a vectorial function u as s ↗ 1. The natural space to work with s-fractional gradients is the Bessel space Hs,p for 0 < s < 1 and 1 < p < ∞. This space converges, in a precise sense, to the Sobolev space W1,p when s ↗ 1. We prove that the s-fractional gradient Dsu of a function u in W1,p converges strongly to the classical gradient Du. We also show a weak compactness result in W1,p for sequences of functions us with bounded Lp norm of Dsus as s ↗ 1. Moreover, the weak convergence of Dsus in Lp implies the weak continuity of its minors, which allows us to prove a semicontinuity result of polyconvex functionals involving s-fractional gradients defined in Hs,p to their local counterparts defined in W1,p. The full -convergence of the functionals is achieved only for the case p > n</field>

            </element>

          </element>

        3. <element name="sponsorship">

          1. <element name="en_US">

            1. <field name="value">This work has been supported by the Agencia Estatal de Investigación of the Spanish Ministry Research and Innovation, through projects MTM2017-83740-P (J.C.B. and J.C.), and MTM2017-85934-C3-2-P (C.M.-C.)</field>

            </element>

          </element>

        </element>

      5. <element name="format">

        1. <element name="extent">

          1. <element name="es_ES">

            1. <field name="value">28 pag.</field>

            </element>

          </element>

        2. <element name="mimetype">

          1. <element name="es_ES">

            1. <field name="value">application/pdf</field>

            </element>

          </element>

        </element>

      6. <element name="language">

        1. <element name="iso">

          1. <element name="es_ES">

            1. <field name="value">eng</field>

            </element>

          </element>

        </element>

      7. <element name="publisher">

        1. <element name="en_US">

          1. <field name="value">Springer</field>

          </element>

        </element>

      8. <element name="relation">

        1. <element name="projectID">

          1. <element name="es_ES">

            1. <field name="value">Gobierno de España. MTM2017-83740-P</field>

            2. <field name="value">Gobierno de España. MTM2017-85934-C3-2-P</field>

            </element>

          </element>

        </element>

      9. <element name="rights">

        1. <element name="accessRights">

          1. <element name="es_ES">

            1. <field name="value">open access</field>

            </element>

          </element>

        </element>

      10. <element name="subject">

        1. <element name="other">

          1. <element name="en_US">

            1. <field name="value">Nonlocal Diffusion</field>

            2. <field name="value">Dynamic Fracture</field>

            3. <field name="value">Crack Propagation</field>

            4. <field name="value">Riesz fractional gradient</field>

            5. <field name="value">Localization of nonlocal gradient</field>

            6. <field name="value">Bessel spaces</field>

            7. <field name="value">Polyconvex functionals</field>

            </element>

          </element>

        2. <element name="eciencia">

          1. <element name="es_ES">

            1. <field name="value">Matemáticas</field>

            </element>

          </element>

        </element>

      11. <element name="title">

        1. <element name="en_US">

          1. <field name="value">Γ -convergence of polyconvex functionals involving s-fractional gradients to their local counterparts</field>

          </element>

        </element>

      12. <element name="type">

        1. <element name="es_ES">

          1. <field name="value">journal article</field>

          </element>

        2. <element name="version">

          1. <element name="es_ES">

            1. <field name="value">info:eu-repo/semantics/acceptedVersion</field>

            </element>

          </element>

        </element>

      13. <element name="authorUAM">

        1. <element name="none">

          1. <field name="value">Mora Corral, Carlos (264668)</field>

          </element>

        </element>

      14. <element name="facultadUAM">

        1. <element name="none">

          1. <field name="value">Facultad de Ciencias</field>

          </element>

        </element>

      </element>

    2. <element name="bundles">

      1. <element name="bundle">

        1. <field name="name">TEXT</field>

        2. <element name="bitstreams">

          1. <element name="bitstream">

            1. <field name="name">r-convergende_bellido_CVPDE_2021_ps.pdf.txt</field>

            2. <field name="originalName">r-convergende_bellido_CVPDE_2021_ps.pdf.txt</field>

            3. <field name="description">Extracted text</field>

            4. <field name="format">text/plain</field>

            5. <field name="size">64797</field>

            6. <field name="url">https://repositorio.uam.es/bitstream/10486/700467/3/r-convergende_bellido_CVPDE_2021_ps.pdf.txt</field>

            7. <field name="checksum">c8fd9f89390ca7048b4833d8309d3b15</field>

            8. <field name="checksumAlgorithm">MD5</field>

            9. <field name="sid">3</field>

            </element>

          </element>

        </element>

      2. <element name="bundle">

        1. <field name="name">THUMBNAIL</field>

        2. <element name="bitstreams">

          1. <element name="bitstream">

            1. <field name="name">r-convergende_bellido_CVPDE_2021_ps.pdf.jpg</field>

            2. <field name="originalName">r-convergende_bellido_CVPDE_2021_ps.pdf.jpg</field>

            3. <field name="description">IM Thumbnail</field>

            4. <field name="format">image/jpeg</field>

            5. <field name="size">1529</field>

            6. <field name="url">https://repositorio.uam.es/bitstream/10486/700467/4/r-convergende_bellido_CVPDE_2021_ps.pdf.jpg</field>

            7. <field name="checksum">62e5aab9a1155b872908256f37817b64</field>

            8. <field name="checksumAlgorithm">MD5</field>

            9. <field name="sid">4</field>

            </element>

          </element>

        </element>

      3. <element name="bundle">

        1. <field name="name">ORIGINAL</field>

        2. <element name="bitstreams">

          1. <element name="bitstream">

            1. <field name="name">r-convergende_bellido_CVPDE_2021_ps.pdf</field>

            2. <field name="originalName">r-convergende_bellido_CVPDE_2021_ps.pdf</field>

            3. <field name="format">application/pdf</field>

            4. <field name="size">1954858</field>

            5. <field name="url">https://repositorio.uam.es/bitstream/10486/700467/1/r-convergende_bellido_CVPDE_2021_ps.pdf</field>

            6. <field name="checksum">8ebde6d895c51369ba077a78c4bae607</field>

            7. <field name="checksumAlgorithm">MD5</field>

            8. <field name="sid">1</field>

            </element>

          </element>

        </element>

      4. <element name="bundle">

        1. <field name="name">LICENSE</field>

        2. <element name="bitstreams">

          1. <element name="bitstream">

            1. <field name="name">license.txt</field>

            2. <field name="originalName">license.txt</field>

            3. <field name="format">text/plain; charset=utf-8</field>

            4. <field name="size">4105</field>

            5. <field name="url">https://repositorio.uam.es/bitstream/10486/700467/2/license.txt</field>

            6. <field name="checksum">c9c6ba57a9a0757a94b73bd12b549d9f</field>

            7. <field name="checksumAlgorithm">MD5</field>

            8. <field name="sid">2</field>

            </element>

          </element>

        </element>

      </element>

    3. <element name="others">

      1. <field name="handle">10486/700467</field>

      2. <field name="identifier">oai:repositorio.uam.es:10486/700467</field>

      3. <field name="lastModifyDate">2022-05-05 09:36:33.648</field>

      </element>

    4. <element name="repository">

      1. <field name="name">Universidad Autónoma de Madrid</field>

      2. <field name="mail">biblosearchivo.biblioteca@uam.es</field>

      </element>

    5. <element name="license">

      1. <field name="bin">RWwgYXV0b3IgZGVjbGFyYSBxdWUgZWwgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgbGEgcHJvcGllZGFkIGludGVsZWN0dWFsLCBvYmpldG8gZGUgbGEgcHJlc2VudGUgY2VzacOzbiwgZW4gcmVsYWNpw7NuIGNvbiBsYSBvYnJhIHF1ZSBhdXRvYXJjaGl2YSwgcXVlIMOpc3RhIGVzIHVuYSBvYnJhIG9yaWdpbmFsIHkgcXVlIG9zdGVudGEgbGEgY29uZGljacOzbiBkZSBhdXRvciBkZSBlc3RhIG9icmEuCgpFbiBjYXNvIGRlIHNlciBjb3RpdHVsYXIsIGVsIGF1dG9yIGRlY2xhcmEsIHF1ZSBubyBpbmZyaW5nZSwgZW4gdGFudG8gZW4gY3VhbnRvIGxlIHNlYSBwb3NpYmxlIHNhYmVyLCBsb3MgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGRlbCByZXN0byBkZSBsb3MgY29hdXRvcmVzLgoKQ29uIGVsIGZpbiBkZSBkYXIgbGEgbcOheGltYSBkaWZ1c2nDs24gYSBtaSBvYnJhIGNpdGFkYSBhIHRyYXbDqXMgZGUgZXN0ZSByZXBvc2l0b3JpbyBpbnN0aXR1Y2lvbmFsLCAgQ0VERSBhIGxhIFVuaXZlcnNpZGFkIEF1dMOzbm9tYSBkZSBNYWRyaWQsIGRlIGZvcm1hIGdyYXR1aXRhIHkgbm8gZXhjbHVzaXZhLCBwb3IgZWwgbcOheGltbyBwbGF6byBsZWdhbCB5IGNvbiDDoW1iaXRvIHVuaXZlcnNhbCwgcGFyYSBxdWUgcHVlZGEgc2VyIHV0aWxpemFkYSBkZSBmb3JtYSBsaWJyZSB5IGdyYXR1aXRhIHBvciB0b2RvcyBsb3MgdXN1YXJpb3MgZGVsIHJlcG9zaXRvcmlvIGxvcyBkZXJlY2hvcyBkZSByZXByb2R1Y2Npw7NuLCBkZSBkaXN0cmlidWNpw7NuLCBkZSBjb211bmljYWNpw7NuIHDDumJsaWNhLCBpbmNsdWlkbyBlbCBkZXJlY2hvIGRlIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbGVjdHLDs25pY2EsIHRhbCB5IGNvbW8gc2UgZGVzY3JpYmVuIGVuIGxhIExleSBkZSBQcm9waWVkYWQgSW50ZWxlY3R1YWwuIEVsIGRlcmVjaG8gZGUgdHJhbnNmb3JtYWNpw7NuIHNlIGNlZGUgYSBsb3Mgw7puaWNvcyBlZmVjdG9zIGRlIGxvIGRpc3B1ZXN0byBlbiBsYSBsZXRyYSAoYSkgZGVsIGFwYXJ0YWRvIHNpZ3VpZW50ZQoKTGEgY2VzacOzbiBzZSByZWFsaXphIGVuIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzOgoKRWwgcmVwb3NpdG9yaW8gbm8gYXN1bWUgbGEgdGl0dWxhcmlkYWQgZGUgbGEgb2JyYSwgcXVlIHNpZ3VlIGNvcnJlc3BvbmRpZW5kbyBhbCBhdXRvci4gU2luIGVtYmFyZ28sIGVzdGEgY2VzacOzbiBkZSBkZXJlY2hvcyBzb2JyZSBsYSBvYnJhIHBlcm1pdGlyw6EgYWwgcmVwb3NpdG9yaW86CgphLglUcmFuc2Zvcm1hcmxhLCBlbiBsYSBtZWRpZGEgZW4gcXVlIGVsbG8gc2VhIG5lY2VzYXJpbywgcGFyYSBhZGFwdGFybGFzIGEgY3VhbHF1aWVyIHRlY25vbG9nw61hICBzdXNjZXB0aWJsZSBkZSBpbmNvcnBvcmFjacOzbiBhIGludGVybmV0OyByZWFsaXphciBsYXMgYWRhcHRhY2lvbmVzIG5lY2VzYXJpYXMgcGFyYSBoYWNlciBwb3NpYmxlIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhIGVuIGZvcm1hdG9zIGVsZWN0csOzbmljb3MsIGFzw60gY29tbyBpbmNvcnBvcmFyIGxvcyBtZXRhZGF0b3MgbmVjZXNhcmlvcyBwYXJhIHJlYWxpemFyIGVsIHJlZ2lzdHJvIGRlIGxhIG9icmEsIGUgaW5jb3Jwb3JhciB0YW1iacOpbiDigJxtYXJjYXMgZGUgYWd1YeKAnSBvIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgZGUgc2VndXJpZGFkIG8gZGUgcHJvdGVjY2nDs24uCgpiLglSZXByb2R1Y2lybGEgZW4gdW4gc29wb3J0ZSAgZGlnaXRhbCBwYXJhIHN1IGluY29ycG9yYWNpw7NuIGEgdW5hIGJhc2UgZGUgZGF0b3MgZWxlY3Ryw7NuaWNhLCBpbmNsdXllbmRvIGVsIGRlcmVjaG8gZGUgcmVwcm9kdWNpciB5IGFsbWFjZW5hciBsYSBvYnJhIGVuIHNlcnZpZG9yZXMgYSBsb3MgZWZlY3RvcyBkZSBzZWd1cmlkYWQsIGRlIGNvbnNlcnZhY2nDs24sIHkgZGUgcHJlc2VydmFjacOzbiBkZWwgZm9ybWF0by4KCmMuCURpc3RyaWJ1aXIgYSBsb3MgdXN1YXJpb3MgY29waWFzIGVsZWN0csOzbmljYXMgZGUgbGEgb2JyYSBlbiB1biBzb3BvcnRlICBkaWdpdGFsLgoKZC4JU3UgY29tdW5pY2FjacOzbiBww7pibGljYSB5IHN1IHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBhIHRyYXbDqXMgZGUgdW4gYXJjaGl2byBhYmllcnRvIGluc3RpdHVjaW9uYWwsIGFjY2VzaWJsZSBkZSBtb2RvIGxpYnJlIHkgZ3JhdHVpdG8gYSB0cmF2w6lzIGRlIGludGVybmV0LgoKTGEgY2VzacOzbiBlcyBuby1leGNsdXNpdmEsIHBvciBsbyBxdWUgZWwgYXV0b3IgZXMgbGlicmUgZGUgY29tdW5pY2FyIHkgZGFyIHB1YmxpY2lkYWQgYSBsYSBvYnJhLCBlbiBlc3RhIHkgZW4gcG9zdGVyaW9yZXMgdmVyc2lvbmVzLCBhIHRyYXbDqXMgZGUgbG9zIG1lZGlvcyBxdWUgZXN0aW1lIG9wb3J0dW5vcy4KCkVsIGF1dG9yIGdhcmFudGl6YSBxdWUgZWwgY29udGVuaWRvIGRlIGxhL3Mgb2JyYS9zIG5vIGF0ZW50YSBjb250cmEgbG9zIGRlcmVjaG9zIGFsIGhvbm9yLCBhIGxhIGludGltaWRhZCB5IGEgbGEgaW1hZ2VuIGRlIHRlcmNlcm9zLiAKCkxhL3Mgb2JyYS9zIHNlIHBvbmRyw6EvbiBhIGRpc3Bvc2ljacOzbiBkZSBsb3MgdXN1YXJpb3MgcGFyYSBxdWUgaGFnYW4gZGUgZWxsYSB1biB1c28ganVzdG8geSByZXNwZXR1b3NvIGNvbiBsb3MgZGVyZWNob3MgZGVsIGF1dG9yLCBzZWfDum4gbG8gcGVybWl0aWRvIHBvciBsYSBsZWdpc2xhY2nDs24gYXBsaWNhYmxlLCB5IGNvbiBmaW5lcyBkZSBlc3R1ZGlvLCBpbnZlc3RpZ2FjacOzbiwgbyBjdWFscXVpZXIgb3RybyBmaW4gbMOtY2l0by4gRWwgdXNvIHBvc3RlcmlvciwgbcOhcyBhbGzDoSBkZSBsYSBjb3BpYSBwcml2YWRhLCByZXF1ZXJpcsOhIHF1ZSBzZSBjaXRlIGxhIGZ1ZW50ZSB5IHNlIHJlY29ub3pjYSBsYSBhdXRvcsOtYSwgcXVlIG5vIHNlIG9idGVuZ2EgYmVuZWZpY2lvIGNvbWVyY2lhbCwgeSBxdWUgbm8gc2UgcmVhbGljZW4gb2JyYXMgZGVyaXZhZGFzLiAgICAKCkxhIFVuaXZlcnNpZGFkIGRlYmVyw6EgaW5mb3JtYXIgYSBsb3MgdXN1YXJpb3MgZGVsIGFyY2hpdm8gc29icmUgbG9zIHVzb3MgcGVybWl0aWRvcywgeSBubyBnYXJhbnRpemEgbmkgYXN1bWUgcmVzcG9uc2FiaWxpZGFkIGFsZ3VuYSBwb3Igb3RyYXMgZm9ybWFzIGVuIHF1ZSBsb3MgdXN1YXJpb3MgaGFnYW4gdW4gdXNvIHBvc3RlcmlvciBkZSBsYXMgb2JyYXMgbm8gY29uZm9ybWUgY29uIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLgoKTGEgVW5pdmVyc2lkYWQgbm8gcmV2aXNhcsOhIGVsIGNvbnRlbmlkbyBkZSBsYXMgb2JyYXMsIHF1ZSBlbiB0b2RvIGNhc28gcGVybWFuZWNlcsOhIGJham8gbGEgcmVzcG9uc2FiaWxpZGFkIGV4Y2x1c2l2YSBkZWwgYXV0b3IuIAoKTGEgVW5pdmVyc2lkYWQgbm8gZXN0YXLDoSBvYmxpZ2FkYSBhICBlamVyY2l0YXIgYWNjaW9uZXMgbGVnYWxlcyBlbiBub21icmUgZGVsIGF1dG9yIGVuIGVsIHN1cHVlc3RvIGRlIGluZnJhY2Npb25lcyBhIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBkZXJpdmFkb3MgZGVsIGRlcMOzc2l0byB5IGFyY2hpdm8gZGUgbGFzIG9icmFzLgoKRWwgYXV0b3IgcG9kcsOhIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBsYSBvYnJhIGRlbCByZXBvc2l0b3JpbyBwb3IgY2F1c2EganVzdGlmaWNhZGEuIEEgdGFsIGZpbiBkZWJlcsOhIHBvbmVyc2UgZW4gY29udGFjdG8gY29uIGVsIGRpcmVjdG9yIGRlIGxhIEJpYmxpb3RlY2EgeSBBcmNoaXZvIGRlIGxhIFVBTS4gQXNpbWlzbW8sIGVsIHJlcG9zaXRvcmlvIHBvZHLDoSByZXRpcmFyIGxhIG9icmEsIHByZXZpYSBub3RpZmljYWNpw7NuIGFsIGF1dG9yLCBlbiBzdXB1ZXN0b3Mgc3VmaWNpZW50ZW1lbnRlIGp1c3RpZmljYWRvcywgbyBlbiBjYXNvIGRlICByZWNsYW1hY2lvbmVzIGRlIHRlcmNlcm9zLgoKRWwgYXV0b3Igc2Vyw6EgY29udmVuaWVudGVtZW50ZSBub3RpZmljYWRvIGRlIGN1YWxxdWllciByZWNsYW1hY2nDs24gcXVlIHB1ZWRhbiBmb3JtdWxhciB0ZXJjZXJhcyBwZXJzb25hcyBlbiByZWxhY2nDs24gY29uIGxhIG9icmEgeSwgZW4gcGFydGljdWxhciwgZGUgcmVjbGFtYWNpb25lcyByZWxhdGl2YXMgYSBsb3MgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIHNvYnJlIGVsbGEuCg==</field>

      </element>

    </metadata>

Hispana

Portal d'accés al patrimoni digital i l'agregador nacional de continguts a Europeana

Contacte

Accedeix al nostre formulari i et contestarem com més prompte millor.

Contacte

X

Tweets by Hispana_roai

Facebook

HISPANA
© Ministeri de Cultura
  • Avís legal