<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>A compact evolutionary interval-valued fuzzy rule-based classification system for the modeling and prediction of real-world financial applications with imbalanced data</dc:title>
<dc:creator>0000-0002-1427-9909</dc:creator>
<dc:creator>Bernardo, Darío</dc:creator>
<dc:creator>Herrera, Francisco</dc:creator>
<dc:creator>0000-0002-1279-6195</dc:creator>
<dc:creator>Hagras, Hani</dc:creator>
<dc:contributor>Universidad Pública de Navarra. Departamento de Automática y Computación</dc:contributor>
<dc:contributor>Nafarroako Unibertsitate Publikoa. Automatika eta Konputazioa Saila</dc:contributor>
<dc:subject>Financial applications</dc:subject>
<dc:subject>Interval-valued fuzzy sets</dc:subject>
<dc:subject>Interval-valued fuzzy rule-based classification systems</dc:subject>
<dc:subject>Evolutionary algorithms</dc:subject>
<dc:description>The current financial crisis has stressed the need of obtaining more accurate prediction models in order to decrease the risk when investing money on economic opportunities. In addition, the transparency of the process followed to make the decisions in financial applications is becoming an important issue. Furthermore, there is a need to handle the real-world imbalanced financial data sets without using sampling techniques which might introduce noise in the used data. In this paper, we present a compact evolutionary interval-valued fuzzy rule-based classification system, which is based on IVTURSFARC-HD (Interval-Valued fuzzy rule-based classification system with TUning and Rule Selection) [22]), for the modeling and prediction of real-world financial applications. This proposed system allows obtaining good predictions accuracies using a small set of short fuzzy rules implying a high degree of interpretability of the generated linguistic model. Furthermore, the proposed system deals with the financial imbalanced datasets with no need for any preprocessing or sampling method and thus avoiding the accidental introduction of noise in the data used in the learning process. The system is also provided with a mechanism to handle examples that are not covered by any fuzzy rule in the generated rule base. To test the quality of our proposal, we will present an experimental study including eleven real-world financial datasets. We will show that the proposed system outperforms the original C4.5 decision tree, type-1 and interval-valued fuzzy counterparts which use the SMOTE sampling technique to preprocess data and the original FURIA, which is a fuzzy approximative classifier. Furthermore, the proposed method enhances the results achieved by the cost sensitive C4.5 and it gives competitive results when compared with FURIA using SMOTE, while our proposal avoids pre-processing techniques and it provides interpretable models that allow obtaining more accurate results.</dc:description>
<dc:description>This work was supported in part by the Spanish Ministry of Science and Technology under Project TIN2011-28488 and Project TIN2013-40765.</dc:description>
<dc:date>2014</dc:date>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:type>info:eu-repo/semantics/acceptedVersion</dc:type>
<dc:identifier>J. A. Sanz, D. Bernardo, F. Herrera, H. Bustince and H. Hagras, "A Compact Evolutionary Interval-Valued Fuzzy Rule-Based Classification System for the Modeling and Prediction of Real-World Financial Applications With Imbalanced Data," in IEEE Transactions on Fuzzy Systems, vol. 23, no. 4, pp. 973-990, Aug. 2015. doi: 10.1109/TFUZZ.2014.2336263</dc:identifier>
<dc:identifier>1063-6706</dc:identifier>
<dc:identifier>https://hdl.handle.net/2454/17689</dc:identifier>
<dc:identifier>10.1109/TFUZZ.2014.2336263</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>IEEE Transactions on Fuzzy Systems</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/MICINN//TIN2011-28488/ES/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/MINECO//TIN2013-40765-P/ES/</dc:relation>
<dc:relation>https://dx.doi.org/10.1109/TFUZZ.2014.2336263</dc:relation>
<dc:rights>© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.</dc:rights>
<dc:rights>Acceso abierto / Sarbide irekia</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:format>application/pdf</dc:format>
<dc:publisher>IEEE</dc:publisher>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<d:DIDL schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didl.xsd">
<d:Item id="hdl_2454_17689">
<d:Descriptor>
<d:Statement mimeType="application/xml; charset=utf-8">
<dii:Identifier schemaLocation="urn:mpeg:mpeg21:2002:01-DII-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/dii/dii.xsd">urn:hdl:2454/17689</dii:Identifier>
</d:Statement>
</d:Descriptor>
<d:Descriptor>
<d:Statement mimeType="application/xml; charset=utf-8">
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>A compact evolutionary interval-valued fuzzy rule-based classification system for the modeling and prediction of real-world financial applications with imbalanced data</dc:title>
<dc:contributor>Universidad Pública de Navarra. Departamento de Automática y Computación</dc:contributor>
<dc:contributor>Nafarroako Unibertsitate Publikoa. Automatika eta Konputazioa Saila</dc:contributor>
<dc:subject>Financial applications</dc:subject>
<dc:subject>Interval-valued fuzzy sets</dc:subject>
<dc:subject>Interval-valued fuzzy rule-based classification systems</dc:subject>
<dc:subject>Evolutionary algorithms</dc:subject>
<dc:description>The current financial crisis has stressed the need of obtaining more accurate prediction models in order to decrease the risk when investing money on economic opportunities. In addition, the transparency of the process followed to make the decisions in financial applications is becoming an important issue. Furthermore, there is a need to handle the real-world imbalanced financial data sets without using sampling techniques which might introduce noise in the used data. In this paper, we present a compact evolutionary interval-valued fuzzy rule-based classification system, which is based on IVTURSFARC-HD (Interval-Valued fuzzy rule-based classification system with TUning and Rule Selection) [22]), for the modeling and prediction of real-world financial applications. This proposed system allows obtaining good predictions accuracies using a small set of short fuzzy rules implying a high degree of interpretability of the generated linguistic model. Furthermore, the proposed system deals with the financial imbalanced datasets with no need for any preprocessing or sampling method and thus avoiding the accidental introduction of noise in the data used in the learning process. The system is also provided with a mechanism to handle examples that are not covered by any fuzzy rule in the generated rule base. To test the quality of our proposal, we will present an experimental study including eleven real-world financial datasets. We will show that the proposed system outperforms the original C4.5 decision tree, type-1 and interval-valued fuzzy counterparts which use the SMOTE sampling technique to preprocess data and the original FURIA, which is a fuzzy approximative classifier. Furthermore, the proposed method enhances the results achieved by the cost sensitive C4.5 and it gives competitive results when compared with FURIA using SMOTE, while our proposal avoids pre-processing techniques and it provides interpretable models that allow obtaining more accurate results.</dc:description>
<dc:date>2014</dc:date>
<dc:type>Artículo / Artikulua</dc:type>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:identifier>J. A. Sanz, D. Bernardo, F. Herrera, H. Bustince and H. Hagras, "A Compact Evolutionary Interval-Valued Fuzzy Rule-Based Classification System for the Modeling and Prediction of Real-World Financial Applications With Imbalanced Data," in IEEE Transactions on Fuzzy Systems, vol. 23, no. 4, pp. 973-990, Aug. 2015. doi: 10.1109/TFUZZ.2014.2336263</dc:identifier>
<dc:identifier>1063-6706</dc:identifier>
<dc:identifier>https://hdl.handle.net/2454/17689</dc:identifier>
<dc:identifier>10.1109/TFUZZ.2014.2336263</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>IEEE Transactions on Fuzzy Systems</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/MICINN//TIN2011-28488/ES/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/MINECO//TIN2013-40765-P/ES/</dc:relation>
<dc:relation>https://dx.doi.org/10.1109/TFUZZ.2014.2336263</dc:relation>
<dc:rights>Acceso abierto / Sarbide irekia</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:rights>© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.</dc:rights>
<dc:publisher>IEEE</dc:publisher>
</oai_dc:dc>
</d:Statement>
</d:Descriptor>
<d:Component id="2454_17689_1">
</d:Component>
</d:Item>
</d:DIDL>
<?xml version="1.0" encoding="UTF-8" ?>
<dim:dim schemaLocation="http://www.dspace.org/xmlns/dspace/dim http://www.dspace.org/schema/dim.xsd">
<dim:field authority="7828--0000-0002-1427-9909" confidence="600" element="creator" lang="es_ES" mdschema="dc">Sanz Delgado, José Antonio</dim:field>
<dim:field authority="7828--0000-0002-1427-9909" confidence="600" element="creator" lang="es_ES" mdschema="dc">Bernardo, Darío</dim:field>
<dim:field authority="7828--0000-0002-1427-9909" confidence="600" element="creator" lang="es_ES" mdschema="dc">Herrera, Francisco</dim:field>
<dim:field authority="7828--0000-0002-1427-9909" confidence="600" element="creator" lang="es_ES" mdschema="dc">Bustince Sola, Humberto</dim:field>
<dim:field authority="7828--0000-0002-1427-9909" confidence="600" element="creator" lang="es_ES" mdschema="dc">Hagras, Hani</dim:field>
<dim:field element="date" mdschema="dc" qualifier="issued">2014</dim:field>
<dim:field element="identifier" lang="en" mdschema="dc" qualifier="citation">J. A. Sanz, D. Bernardo, F. Herrera, H. Bustince and H. Hagras, "A Compact Evolutionary Interval-Valued Fuzzy Rule-Based Classification System for the Modeling and Prediction of Real-World Financial Applications With Imbalanced Data," in IEEE Transactions on Fuzzy Systems, vol. 23, no. 4, pp. 973-990, Aug. 2015. doi: 10.1109/TFUZZ.2014.2336263</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="issn">1063-6706</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="uri">https://hdl.handle.net/2454/17689</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="doi">10.1109/TFUZZ.2014.2336263</dim:field>
<dim:field element="description" lang="en" mdschema="dc" qualifier="abstract">The current financial crisis has stressed the need of obtaining more accurate prediction models in order to decrease the risk when investing money on economic opportunities. In addition, the transparency of the process followed to make the decisions in financial applications is becoming an important issue. Furthermore, there is a need to handle the real-world imbalanced financial data sets without using sampling techniques which might introduce noise in the used data. In this paper, we present a compact evolutionary interval-valued fuzzy rule-based classification system, which is based on IVTURSFARC-HD (Interval-Valued fuzzy rule-based classification system with TUning and Rule Selection) [22]), for the modeling and prediction of real-world financial applications. This proposed system allows obtaining good predictions accuracies using a small set of short fuzzy rules implying a high degree of interpretability of the generated linguistic model. Furthermore, the proposed system deals with the financial imbalanced datasets with no need for any preprocessing or sampling method and thus avoiding the accidental introduction of noise in the data used in the learning process. The system is also provided with a mechanism to handle examples that are not covered by any fuzzy rule in the generated rule base. To test the quality of our proposal, we will present an experimental study including eleven real-world financial datasets. We will show that the proposed system outperforms the original C4.5 decision tree, type-1 and interval-valued fuzzy counterparts which use the SMOTE sampling technique to preprocess data and the original FURIA, which is a fuzzy approximative classifier. Furthermore, the proposed method enhances the results achieved by the cost sensitive C4.5 and it gives competitive results when compared with FURIA using SMOTE, while our proposal avoids pre-processing techniques and it provides interpretable models that allow obtaining more accurate results.</dim:field>
<dim:field element="description" lang="en" mdschema="dc" qualifier="provenance">Submitted by José Antonio Sanz Delgado (joseantonio.sanz@unavarra.es) on 2015-07-27T10:07:19Z No. of bitstreams: 1 IEEE_TFS_2015_Aceptada.pdf: 690772 bytes, checksum: b287cfe40cad7940e71831ba91881bbb (MD5)</dim:field>
<dim:field element="description" lang="en" mdschema="dc" qualifier="provenance">Made available in DSpace on 2015-07-27T10:07:19Z (GMT). No. of bitstreams: 1 IEEE_TFS_2015_Aceptada.pdf: 690772 bytes, checksum: b287cfe40cad7940e71831ba91881bbb (MD5) Previous issue date: 2015</dim:field>
<dim:field element="description" lang="en" mdschema="dc" qualifier="sponsorship">This work was supported in part by the Spanish Ministry of Science and Technology under Project TIN2011-28488 and Project TIN2013-40765.</dim:field>
<dim:field element="format" lang="en" mdschema="dc" qualifier="mimetype">application/pdf</dim:field>
<dim:field element="language" lang="en" mdschema="dc" qualifier="iso">eng</dim:field>
<dim:field element="publisher" lang="en" mdschema="dc">IEEE</dim:field>
<dim:field element="relation" lang="en" mdschema="dc" qualifier="ispartof">IEEE Transactions on Fuzzy Systems</dim:field>
<dim:field element="relation" lang="en" mdschema="dc" qualifier="projectID">info:eu-repo/grantAgreement/MICINN//TIN2011-28488/ES/</dim:field>
<dim:field element="relation" lang="en" mdschema="dc" qualifier="projectID">info:eu-repo/grantAgreement/MINECO//TIN2013-40765-P/ES/</dim:field>
<dim:field element="relation" mdschema="dc" qualifier="publisherversion">https://dx.doi.org/10.1109/TFUZZ.2014.2336263</dim:field>
<dim:field element="rights" lang="en" mdschema="dc">© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.</dim:field>
<dim:field element="rights" lang="es" mdschema="dc" qualifier="accessRights">Acceso abierto / Sarbide irekia</dim:field>
<dim:field element="rights" lang="en" mdschema="dc" qualifier="accessRights">info:eu-repo/semantics/openAccess</dim:field>
<dim:field element="subject" lang="en" mdschema="dc">Financial applications</dim:field>
<dim:field element="subject" lang="en" mdschema="dc">Interval-valued fuzzy sets</dim:field>
<dim:field element="subject" lang="en" mdschema="dc">Interval-valued fuzzy rule-based classification systems</dim:field>
<dim:field element="subject" lang="en" mdschema="dc">Evolutionary algorithms</dim:field>
<dim:field element="title" lang="en" mdschema="dc">A compact evolutionary interval-valued fuzzy rule-based classification system for the modeling and prediction of real-world financial applications with imbalanced data</dim:field>
<dim:field element="type" lang="es" mdschema="dc">Artículo / Artikulua</dim:field>
<dim:field element="type" lang="en" mdschema="dc">info:eu-repo/semantics/article</dim:field>
<dim:field element="type" lang="es" mdschema="dc" qualifier="version">Versión aceptada / Onetsi den bertsioa</dim:field>
<dim:field element="type" lang="en" mdschema="dc" qualifier="version">info:eu-repo/semantics/acceptedVersion</dim:field>
<dim:field element="contributor" lang="es_ES" mdschema="dc" qualifier="department">Universidad Pública de Navarra. Departamento de Automática y Computación</dim:field>
<dim:field element="contributor" lang="eu" mdschema="dc" qualifier="department">Nafarroako Unibertsitate Publikoa. Automatika eta Konputazioa Saila</dim:field>
</dim:dim>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.w3.org/1999/02/22-rdf-syntax-ns# http://www.europeana.eu/schemas/edm">
<edm:ProvidedCHO about="https://hdl.handle.net/2454/17689">
<dc:title>A compact evolutionary interval-valued fuzzy rule-based classification system for the modeling and prediction of real-world financial applications with imbalanced data</dc:title>
<dc:creator>Sanz Delgado, José Antonio</dc:creator>
<dc:creator>Bernardo, Darío</dc:creator>
<dc:creator>Herrera, Francisco</dc:creator>
<dc:creator>Bustince Sola, Humberto</dc:creator>
<dc:creator>Hagras, Hani</dc:creator>
<dc:contributor>Universidad Pública de Navarra. Departamento de Automática y Computación</dc:contributor>
<dc:contributor>Nafarroako Unibertsitate Publikoa. Automatika eta Konputazioa Saila</dc:contributor>
<dc:subject>Financial applications</dc:subject>
<dc:subject>Interval-valued fuzzy sets</dc:subject>
<dc:subject>Interval-valued fuzzy rule-based classification systems</dc:subject>
<dc:subject>Evolutionary algorithms</dc:subject>
<dc:description>The current financial crisis has stressed the need of obtaining more accurate prediction models in order to decrease the risk when investing money on economic opportunities. In addition, the transparency of the process followed to make the decisions in financial applications is becoming an important issue. Furthermore, there is a need to handle the real-world imbalanced financial data sets without using sampling techniques which might introduce noise in the used data. In this paper, we present a compact evolutionary interval-valued fuzzy rule-based classification system, which is based on IVTURSFARC-HD (Interval-Valued fuzzy rule-based classification system with TUning and Rule Selection) [22]), for the modeling and prediction of real-world financial applications. This proposed system allows obtaining good predictions accuracies using a small set of short fuzzy rules implying a high degree of interpretability of the generated linguistic model. Furthermore, the proposed system deals with the financial imbalanced datasets with no need for any preprocessing or sampling method and thus avoiding the accidental introduction of noise in the data used in the learning process. The system is also provided with a mechanism to handle examples that are not covered by any fuzzy rule in the generated rule base. To test the quality of our proposal, we will present an experimental study including eleven real-world financial datasets. We will show that the proposed system outperforms the original C4.5 decision tree, type-1 and interval-valued fuzzy counterparts which use the SMOTE sampling technique to preprocess data and the original FURIA, which is a fuzzy approximative classifier. Furthermore, the proposed method enhances the results achieved by the cost sensitive C4.5 and it gives competitive results when compared with FURIA using SMOTE, while our proposal avoids pre-processing techniques and it provides interpretable models that allow obtaining more accurate results.</dc:description>
<dc:date>2014</dc:date>
<dc:type>Artículo / Artikulua</dc:type>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:identifier>J. A. Sanz, D. Bernardo, F. Herrera, H. Bustince and H. Hagras, "A Compact Evolutionary Interval-Valued Fuzzy Rule-Based Classification System for the Modeling and Prediction of Real-World Financial Applications With Imbalanced Data," in IEEE Transactions on Fuzzy Systems, vol. 23, no. 4, pp. 973-990, Aug. 2015. doi: 10.1109/TFUZZ.2014.2336263</dc:identifier>
<dc:identifier>1063-6706</dc:identifier>
<dc:identifier>https://hdl.handle.net/2454/17689</dc:identifier>
<dc:identifier>10.1109/TFUZZ.2014.2336263</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>IEEE Transactions on Fuzzy Systems</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/MICINN//TIN2011-28488/ES/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/MINECO//TIN2013-40765-P/ES/</dc:relation>
<dc:relation>https://dx.doi.org/10.1109/TFUZZ.2014.2336263</dc:relation>
<dc:publisher>IEEE</dc:publisher>
<edm:type>TEXT</edm:type>
</edm:ProvidedCHO>
<ore:Aggregation about="https://hdl.handle.net/2454/17689">
<edm:dataProvider>Academica-e. Repositorio institucional de la Universidad Pública de Navarra</edm:dataProvider>
<edm:provider>Hispana</edm:provider>
</ore:Aggregation>
<edm:WebResource about="https://academica-e.unavarra.es/xmlui/bitstream/2454/17689/1/IEEE_TFS_2015_Aceptada.pdf">
</edm:WebResource>
</rdf:RDF>
<?xml version="1.0" encoding="UTF-8" ?>
<thesis schemaLocation="http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd">
<title>A compact evolutionary interval-valued fuzzy rule-based classification system for the modeling and prediction of real-world financial applications with imbalanced data</title>
<contributor>Universidad Pública de Navarra. Departamento de Automática y Computación</contributor>
<contributor>Nafarroako Unibertsitate Publikoa. Automatika eta Konputazioa Saila</contributor>
<subject>Financial applications</subject>
<subject>Interval-valued fuzzy sets</subject>
<subject>Interval-valued fuzzy rule-based classification systems</subject>
<subject>Evolutionary algorithms</subject>
<description>The current financial crisis has stressed the need of obtaining more accurate prediction models in order to decrease the risk when investing money on economic opportunities. In addition, the transparency of the process followed to make the decisions in financial applications is becoming an important issue. Furthermore, there is a need to handle the real-world imbalanced financial data sets without using sampling techniques which might introduce noise in the used data. In this paper, we present a compact evolutionary interval-valued fuzzy rule-based classification system, which is based on IVTURSFARC-HD (Interval-Valued fuzzy rule-based classification system with TUning and Rule Selection) [22]), for the modeling and prediction of real-world financial applications. This proposed system allows obtaining good predictions accuracies using a small set of short fuzzy rules implying a high degree of interpretability of the generated linguistic model. Furthermore, the proposed system deals with the financial imbalanced datasets with no need for any preprocessing or sampling method and thus avoiding the accidental introduction of noise in the data used in the learning process. The system is also provided with a mechanism to handle examples that are not covered by any fuzzy rule in the generated rule base. To test the quality of our proposal, we will present an experimental study including eleven real-world financial datasets. We will show that the proposed system outperforms the original C4.5 decision tree, type-1 and interval-valued fuzzy counterparts which use the SMOTE sampling technique to preprocess data and the original FURIA, which is a fuzzy approximative classifier. Furthermore, the proposed method enhances the results achieved by the cost sensitive C4.5 and it gives competitive results when compared with FURIA using SMOTE, while our proposal avoids pre-processing techniques and it provides interpretable models that allow obtaining more accurate results.</description>
<date>2014</date>
<type>Artículo / Artikulua</type>
<type>info:eu-repo/semantics/article</type>
<identifier>J. A. Sanz, D. Bernardo, F. Herrera, H. Bustince and H. Hagras, "A Compact Evolutionary Interval-Valued Fuzzy Rule-Based Classification System for the Modeling and Prediction of Real-World Financial Applications With Imbalanced Data," in IEEE Transactions on Fuzzy Systems, vol. 23, no. 4, pp. 973-990, Aug. 2015. doi: 10.1109/TFUZZ.2014.2336263</identifier>
<identifier>1063-6706</identifier>
<identifier>https://hdl.handle.net/2454/17689</identifier>
<identifier>10.1109/TFUZZ.2014.2336263</identifier>
<language>eng</language>
<relation>IEEE Transactions on Fuzzy Systems</relation>
<relation>info:eu-repo/grantAgreement/MICINN//TIN2011-28488/ES/</relation>
<relation>info:eu-repo/grantAgreement/MINECO//TIN2013-40765-P/ES/</relation>
<relation>https://dx.doi.org/10.1109/TFUZZ.2014.2336263</relation>
<rights>Acceso abierto / Sarbide irekia</rights>
<rights>info:eu-repo/semantics/openAccess</rights>
<rights>© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.</rights>
<publisher>IEEE</publisher>
</thesis>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>00925njm 22002777a 4500</leader>
<datafield ind1=" " ind2=" " tag="042">
<subfield code="a">dc</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Sanz Delgado, José Antonio</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Bernardo, Darío</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Herrera, Francisco</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Bustince Sola, Humberto</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Hagras, Hani</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="260">
<subfield code="c">2014</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">The current financial crisis has stressed the need of obtaining more accurate prediction models in order to decrease the risk when investing money on economic opportunities. In addition, the transparency of the process followed to make the decisions in financial applications is becoming an important issue. Furthermore, there is a need to handle the real-world imbalanced financial data sets without using sampling techniques which might introduce noise in the used data. In this paper, we present a compact evolutionary interval-valued fuzzy rule-based classification system, which is based on IVTURSFARC-HD (Interval-Valued fuzzy rule-based classification system with TUning and Rule Selection) [22]), for the modeling and prediction of real-world financial applications. This proposed system allows obtaining good predictions accuracies using a small set of short fuzzy rules implying a high degree of interpretability of the generated linguistic model. Furthermore, the proposed system deals with the financial imbalanced datasets with no need for any preprocessing or sampling method and thus avoiding the accidental introduction of noise in the data used in the learning process. The system is also provided with a mechanism to handle examples that are not covered by any fuzzy rule in the generated rule base. To test the quality of our proposal, we will present an experimental study including eleven real-world financial datasets. We will show that the proposed system outperforms the original C4.5 decision tree, type-1 and interval-valued fuzzy counterparts which use the SMOTE sampling technique to preprocess data and the original FURIA, which is a fuzzy approximative classifier. Furthermore, the proposed method enhances the results achieved by the cost sensitive C4.5 and it gives competitive results when compared with FURIA using SMOTE, while our proposal avoids pre-processing techniques and it provides interpretable models that allow obtaining more accurate results.</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">J. A. Sanz, D. Bernardo, F. Herrera, H. Bustince and H. Hagras, "A Compact Evolutionary Interval-Valued Fuzzy Rule-Based Classification System for the Modeling and Prediction of Real-World Financial Applications With Imbalanced Data," in IEEE Transactions on Fuzzy Systems, vol. 23, no. 4, pp. 973-990, Aug. 2015. doi: 10.1109/TFUZZ.2014.2336263</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">1063-6706</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">https://hdl.handle.net/2454/17689</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">10.1109/TFUZZ.2014.2336263</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Financial applications</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Interval-valued fuzzy sets</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Interval-valued fuzzy rule-based classification systems</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Evolutionary algorithms</subfield>
</datafield>
<datafield ind1="0" ind2="0" tag="245">
<subfield code="a">A compact evolutionary interval-valued fuzzy rule-based classification system for the modeling and prediction of real-world financial applications with imbalanced data</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<mets ID=" DSpace_ITEM_2454-17689" OBJID=" hdl:2454/17689" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">
<metsHdr CREATEDATE="2024-04-30T20:02:49Z">
<agent ROLE="CUSTODIAN" TYPE="ORGANIZATION">
<name>Academica-e</name>
</agent>
</metsHdr>
<dmdSec ID="DMD_2454_17689">
<mdWrap MDTYPE="MODS">
<xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:role>
<mods:roleTerm type="text">department</mods:roleTerm>
</mods:role>
<mods:namePart>Universidad Pública de Navarra. Departamento de Automática y Computación</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">department</mods:roleTerm>
</mods:role>
<mods:namePart>Nafarroako Unibertsitate Publikoa. Automatika eta Konputazioa Saila</mods:namePart>
</mods:name>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2014</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="citation">J. A. Sanz, D. Bernardo, F. Herrera, H. Bustince and H. Hagras, "A Compact Evolutionary Interval-Valued Fuzzy Rule-Based Classification System for the Modeling and Prediction of Real-World Financial Applications With Imbalanced Data," in IEEE Transactions on Fuzzy Systems, vol. 23, no. 4, pp. 973-990, Aug. 2015. doi: 10.1109/TFUZZ.2014.2336263</mods:identifier>
<mods:identifier type="issn">1063-6706</mods:identifier>
<mods:identifier type="uri">https://hdl.handle.net/2454/17689</mods:identifier>
<mods:identifier type="doi">10.1109/TFUZZ.2014.2336263</mods:identifier>
<mods:abstract>The current financial crisis has stressed the need of obtaining more accurate prediction models in order to decrease the risk when investing money on economic opportunities. In addition, the transparency of the process followed to make the decisions in financial applications is becoming an important issue. Furthermore, there is a need to handle the real-world imbalanced financial data sets without using sampling techniques which might introduce noise in the used data. In this paper, we present a compact evolutionary interval-valued fuzzy rule-based classification system, which is based on IVTURSFARC-HD (Interval-Valued fuzzy rule-based classification system with TUning and Rule Selection) [22]), for the modeling and prediction of real-world financial applications. This proposed system allows obtaining good predictions accuracies using a small set of short fuzzy rules implying a high degree of interpretability of the generated linguistic model. Furthermore, the proposed system deals with the financial imbalanced datasets with no need for any preprocessing or sampling method and thus avoiding the accidental introduction of noise in the data used in the learning process. The system is also provided with a mechanism to handle examples that are not covered by any fuzzy rule in the generated rule base. To test the quality of our proposal, we will present an experimental study including eleven real-world financial datasets. We will show that the proposed system outperforms the original C4.5 decision tree, type-1 and interval-valued fuzzy counterparts which use the SMOTE sampling technique to preprocess data and the original FURIA, which is a fuzzy approximative classifier. Furthermore, the proposed method enhances the results achieved by the cost sensitive C4.5 and it gives competitive results when compared with FURIA using SMOTE, while our proposal avoids pre-processing techniques and it provides interpretable models that allow obtaining more accurate results.</mods:abstract>
<mods:language>
<mods:languageTerm authority="rfc3066">eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.</mods:accessCondition>
<mods:subject>
<mods:topic>Financial applications</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Interval-valued fuzzy sets</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Interval-valued fuzzy rule-based classification systems</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Evolutionary algorithms</mods:topic>
</mods:subject>
<mods:titleInfo>
<mods:title>A compact evolutionary interval-valued fuzzy rule-based classification system for the modeling and prediction of real-world financial applications with imbalanced data</mods:title>
</mods:titleInfo>
<mods:genre>Artículo / Artikulua</mods:genre>
</mods:mods>
</xmlData>
</mdWrap>
</dmdSec>
<amdSec ID="TMD_2454_17689">
<rightsMD ID="RIG_2454_17689">
<mdWrap MDTYPE="OTHER" MIMETYPE="text/plain" OTHERMDTYPE="DSpaceDepositLicense">
<binData>TElDRU5DSUEgREUgRElTVFJJQlVDScOTTiBOTyBFWENMVVNJVkEKCkFsIGZpcm1hciB5IHJlbWl0aXIgZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBjb25jZWRlIGEgbGEgVW5pdmVyc2lkYWQgUMO6YmxpY2EgZGUgTmF2YXJyYSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBhIHJldXRpbGl6YXIsIHRyYXNmb3JtYXIgKGVuIGxvcyB0w6lybWlub3MgZGVmaW5pZG9zIG3DoXMgYWRlbGFudGUpIHkvbyBhIGRpc3RyaWJ1aXIgZWwgZG9jdW1lbnRvIHF1ZSBsYSBhY29tcGHDsWEgKGluY2x1eWVuZG8gZWwgcmVzdW1lbikgZW4gZm9ybWF0byBpbXByZXNvIG8gZWxlY3Ryw7NuaWNvIHkgZW4gY3VhbHF1aWVyIG90cm8sIGNvbW8gcG9yIGVqZW1wbG8sIGF1ZGlvIG8gdsOtZGVvLgoKQWNlcHRhIHF1ZSBsYSBVbml2ZXJzaWRhZCBQw7pibGljYSBkZSBOYXZhcnJhIHB1ZWRhLCBzaW4gbW9kaWZpY2FyIGVsIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvLCB0cmFuc2Zvcm1hcmxvIGEgY3VhbHF1aWVyIHNvcG9ydGUgbyBmb3JtYXRvIGNvbiBmaW5lcyBkZSBwcmVzZXJ2YWNpw7NuLgoKVGFtYmnDqW4gYWNlcHRhIHF1ZSBsYSBVbml2ZXJzaWRhZCBQw7pibGljYSBkZSBOYXZhcnJhIHB1ZWRhIGd1YXJkYXIgbcOhcyBkZSB1bmEgY29waWEgZGUgw6lsIGNvbiBmaW5lcyBkZSBzZWd1cmlkYWQgeSBwcmVzZXJ2YWNpw7NuLiAKCk1hbmlmaWVzdGEgcXVlIGVzdGUgZG9jdW1lbnRvIGVzIG9icmEgb3JpZ2luYWwgc3V5YSB5IHF1ZSB0aWVuZSBkZXJlY2hvIGEgY2VkZXIgbG9zIGRlcmVjaG9zIHF1ZSBzZSBleHByZXNhbiBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBtYW5pZmllc3RhIHF1ZSwgaGFzdGEgZG9uZGUgc2FiZSwgbm8gaW5mcmluZ2UgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG90cm9zLiAKClNpIGVzdGUgZG9jdW1lbnRvIGNvbnRpZW5lIG1hdGVyaWFsIHNvYnJlIGVsIHF1ZSB1c3RlZCBubyB0aWVuZSBkZXJlY2hvcyBkZSBhdXRvciwgbWFuaWZpZXN0YSBxdWUgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBzaW4gcmVzdHJpY2Npb25lcyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgY2VkZXIgYSBsYSBVbml2ZXJzaWRhZCBQw7pibGljYSBkZSBOYXZhcnJhIGxvcyBkZXJlY2hvcyBleGlnaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSB5IHF1ZSBlbCBtYXRlcmlhbCBwZXJ0ZW5lY2llbnRlIGEgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGRlbnRybyBkZWwgdGV4dG8gbyBlbCBjb250ZW5pZG8gZGUgZXN0ZSBkb2N1bWVudG8uIAoKU2kgZXN0ZSBkb2N1bWVudG8gZXN0w6EgYmFzYWRvIGVuIHVuYSBvYnJhIHF1ZSBoYSBzaWRvIHBhdHJvY2luYWRhIG8gcHJvbW92aWRhIHBvciB1biBvcmdhbmlzbW8gZGlzdGludG8gZGUgbGEgVW5pdmVyc2lkYWQgUMO6YmxpY2EgZGUgTmF2YXJyYSwgdXN0ZWQgYWNlcHRhIHF1ZSBoYSBzYXRpc2ZlY2hvIGN1YWxxdWllciBkZXJlY2hvIGRlIHJldmlzacOzbiB5IGRlbcOhcyBvYmxpZ2FjaW9uZXMgZXhpZ2lkYXMgcG9yIGRpY2hvIGNvbnRyYXRvIG8gYWN1ZXJkby4KCkxhIFVuaXZlcnNpZGFkIFDDumJsaWNhIGRlIE5hdmFycmEgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIHN1KHMpIG5vbWJyZShzKSBjb21vIGF1dG9yKGVzKSBvIHByb3BpZXRhcmlvKHMpIGRlIGVzdGUgZG9jdW1lbnRvIHkgbm8gaGFyw6EgY2FtYmlvcyBxdWUgbm8gc2VhbiBsb3MgcGVybWl0aWRvcyBwb3IgZXN0YSBsaWNlbmNpYS4KCg==</binData>
</mdWrap>
</rightsMD>
</amdSec>
<amdSec ID="FO_2454_17689_1">
<techMD ID="TECH_O_2454_17689_1">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>https://academica-e.unavarra.es/xmlui/bitstream/2454/17689/1/IEEE_TFS_2015_Aceptada.pdf</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>b287cfe40cad7940e71831ba91881bbb</premis:messageDigest>
</premis:fixity>
<premis:size>690772</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>application/pdf</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>IEEE_TFS_2015_Aceptada.pdf</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<amdSec ID="FT_2454_17689_3">
<techMD ID="TECH_T_2454_17689_3">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>https://academica-e.unavarra.es/xmlui/bitstream/2454/17689/3/IEEE_TFS_2015_Aceptada.pdf.txt</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>ea776183685a3004ccf0a49d51e7cae9</premis:messageDigest>
</premis:fixity>
<premis:size>105116</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>text/plain</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>IEEE_TFS_2015_Aceptada.pdf.txt</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<fileSec>
<fileGrp USE="ORIGINAL">
<file ADMID="FO_2454_17689_1" CHECKSUM="b287cfe40cad7940e71831ba91881bbb" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_2454_17689_1" ID="BITSTREAM_ORIGINAL_2454_17689_1" MIMETYPE="application/pdf" SEQ="1" SIZE="690772">
</file>
</fileGrp>
<fileGrp USE="TEXT">
<file ADMID="FT_2454_17689_3" CHECKSUM="ea776183685a3004ccf0a49d51e7cae9" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_2454_17689_3" ID="BITSTREAM_TEXT_2454_17689_3" MIMETYPE="text/plain" SEQ="3" SIZE="105116">
</file>
</fileGrp>
</fileSec>
<structMap LABEL="DSpace Object" TYPE="LOGICAL">
<div ADMID="DMD_2454_17689" TYPE="DSpace Object Contents">
<div TYPE="DSpace BITSTREAM">
</div>
</div>
</structMap>
</mets>
<?xml version="1.0" encoding="UTF-8" ?>
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2014</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="citation">J. A. Sanz, D. Bernardo, F. Herrera, H. Bustince and H. Hagras, "A Compact Evolutionary Interval-Valued Fuzzy Rule-Based Classification System for the Modeling and Prediction of Real-World Financial Applications With Imbalanced Data," in IEEE Transactions on Fuzzy Systems, vol. 23, no. 4, pp. 973-990, Aug. 2015. doi: 10.1109/TFUZZ.2014.2336263</mods:identifier>
<mods:identifier type="issn">1063-6706</mods:identifier>
<mods:identifier type="uri">https://hdl.handle.net/2454/17689</mods:identifier>
<mods:identifier type="doi">10.1109/TFUZZ.2014.2336263</mods:identifier>
<mods:abstract>The current financial crisis has stressed the need of obtaining more accurate prediction models in order to decrease the risk when investing money on economic opportunities. In addition, the transparency of the process followed to make the decisions in financial applications is becoming an important issue. Furthermore, there is a need to handle the real-world imbalanced financial data sets without using sampling techniques which might introduce noise in the used data. In this paper, we present a compact evolutionary interval-valued fuzzy rule-based classification system, which is based on IVTURSFARC-HD (Interval-Valued fuzzy rule-based classification system with TUning and Rule Selection) [22]), for the modeling and prediction of real-world financial applications. This proposed system allows obtaining good predictions accuracies using a small set of short fuzzy rules implying a high degree of interpretability of the generated linguistic model. Furthermore, the proposed system deals with the financial imbalanced datasets with no need for any preprocessing or sampling method and thus avoiding the accidental introduction of noise in the data used in the learning process. The system is also provided with a mechanism to handle examples that are not covered by any fuzzy rule in the generated rule base. To test the quality of our proposal, we will present an experimental study including eleven real-world financial datasets. We will show that the proposed system outperforms the original C4.5 decision tree, type-1 and interval-valued fuzzy counterparts which use the SMOTE sampling technique to preprocess data and the original FURIA, which is a fuzzy approximative classifier. Furthermore, the proposed method enhances the results achieved by the cost sensitive C4.5 and it gives competitive results when compared with FURIA using SMOTE, while our proposal avoids pre-processing techniques and it provides interpretable models that allow obtaining more accurate results.</mods:abstract>
<mods:language>
<mods:languageTerm>eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">Acceso abierto / Sarbide irekia</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">info:eu-repo/semantics/openAccess</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.</mods:accessCondition>
<mods:subject>
<mods:topic>Financial applications</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Interval-valued fuzzy sets</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Interval-valued fuzzy rule-based classification systems</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Evolutionary algorithms</mods:topic>
</mods:subject>
<mods:titleInfo>
<mods:title>A compact evolutionary interval-valued fuzzy rule-based classification system for the modeling and prediction of real-world financial applications with imbalanced data</mods:title>
</mods:titleInfo>
<mods:genre>Artículo / Artikulua</mods:genre>
<mods:genre>info:eu-repo/semantics/article</mods:genre>
</mods:mods>
<?xml version="1.0" encoding="UTF-8" ?>
<oaire:record schemaLocation="http://namespace.openaire.eu/schema/oaire/">
<datacite:titles>
<datacite:title>A compact evolutionary interval-valued fuzzy rule-based classification system for the modeling and prediction of real-world financial applications with imbalanced data</datacite:title>
</datacite:titles>
<datacite:creators>
<datacite:creator>
<datacite:creatorName>Sanz Delgado, José Antonio</datacite:creatorName>
<datacite:affiliation>Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa</datacite:affiliation>
<datacite:nameIdentifier nameIdentifierScheme="ORCID" schemeURI="https://orcid.org">0000-0002-1427-9909</datacite:nameIdentifier>
</datacite:creator>
<datacite:creator>
<datacite:creatorName>Bernardo, Darío</datacite:creatorName>
</datacite:creator>
<datacite:creator>
<datacite:creatorName>Herrera, Francisco</datacite:creatorName>
</datacite:creator>
<datacite:creator>
<datacite:creatorName>Bustince Sola, Humberto</datacite:creatorName>
<datacite:affiliation>Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa</datacite:affiliation>
<datacite:nameIdentifier nameIdentifierScheme="ORCID" schemeURI="https://orcid.org">0000-0002-1279-6195</datacite:nameIdentifier>
</datacite:creator>
<datacite:creator>
<datacite:creatorName>Hagras, Hani</datacite:creatorName>
</datacite:creator>
</datacite:creators>
<datacite:contributors>
<datacite:contributor contributorType="ResearchGroup">
<datacite:contributorName nameType="Organizational">Universidad Pública de Navarra. Departamento de Automática y Computación</datacite:contributorName>
</datacite:contributor>
<datacite:contributor contributorType="ResearchGroup">
<datacite:contributorName nameType="Organizational">Nafarroako Unibertsitate Publikoa. Automatika eta Konputazioa Saila</datacite:contributorName>
</datacite:contributor>
</datacite:contributors>
<oaire:fundingReferences>
<oaire:fundingReference>
<oaire:funderName>MICINN</oaire:funderName>
<oaire:awardNumber>TIN2011-28488</oaire:awardNumber>
</oaire:fundingReference>
<oaire:fundingReference>
<oaire:funderName>MINECO</oaire:funderName>
<oaire:awardNumber>TIN2013-40765-P</oaire:awardNumber>
</oaire:fundingReference>
</oaire:fundingReferences>
<datacite:subject>Financial applications</datacite:subject>
<datacite:subject>Interval-valued fuzzy sets</datacite:subject>
<datacite:subject>Interval-valued fuzzy rule-based classification systems</datacite:subject>
<datacite:subject>Evolutionary algorithms</datacite:subject>
<dc:description>The current financial crisis has stressed the need of obtaining more accurate prediction models in order to decrease the risk when investing money on economic opportunities. In addition, the transparency of the process followed to make the decisions in financial applications is becoming an important issue. Furthermore, there is a need to handle the real-world imbalanced financial data sets without using sampling techniques which might introduce noise in the used data. In this paper, we present a compact evolutionary interval-valued fuzzy rule-based classification system, which is based on IVTURSFARC-HD (Interval-Valued fuzzy rule-based classification system with TUning and Rule Selection) [22]), for the modeling and prediction of real-world financial applications. This proposed system allows obtaining good predictions accuracies using a small set of short fuzzy rules implying a high degree of interpretability of the generated linguistic model. Furthermore, the proposed system deals with the financial imbalanced datasets with no need for any preprocessing or sampling method and thus avoiding the accidental introduction of noise in the data used in the learning process. The system is also provided with a mechanism to handle examples that are not covered by any fuzzy rule in the generated rule base. To test the quality of our proposal, we will present an experimental study including eleven real-world financial datasets. We will show that the proposed system outperforms the original C4.5 decision tree, type-1 and interval-valued fuzzy counterparts which use the SMOTE sampling technique to preprocess data and the original FURIA, which is a fuzzy approximative classifier. Furthermore, the proposed method enhances the results achieved by the cost sensitive C4.5 and it gives competitive results when compared with FURIA using SMOTE, while our proposal avoids pre-processing techniques and it provides interpretable models that allow obtaining more accurate results.</dc:description>
<dc:description>This work was supported in part by the Spanish Ministry of Science and Technology under Project TIN2011-28488 and Project TIN2013-40765.</dc:description>
<datacite:date dateType="Issued">2014</datacite:date>
<oaire:resourceType resourceTypeGeneral="literature" uri="http://purl.org/coar/resource_type/c_6501">article</oaire:resourceType>
<oaire:version uri="http://purl.org/coar/version/c_ab4af688f83e57aa">AM</oaire:version>
<datacite:identifier>https://hdl.handle.net/2454/17689</datacite:identifier>
<datacite:alternateIdentifiers>
<datacite:alternateIdentifier alternateIdentifierType="ISSN">1063-6706</datacite:alternateIdentifier>
<datacite:alternateIdentifier alternateIdentifierType="DOI">10.1109/TFUZZ.2014.2336263</datacite:alternateIdentifier>
</datacite:alternateIdentifiers>
<dc:language>eng</dc:language>
<dc:rights>© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.</dc:rights>
<datacite:rights rightsURI="http://purl.org/coar/access_right/c_abf2">open access</datacite:rights>
<dc:format>application/pdf</dc:format>
<dc:publisher>IEEE</dc:publisher>
<oaire:file>https://academica-e.unavarra.es/xmlui/bitstream/2454/17689/1/IEEE_TFS_2015_Aceptada.pdf</oaire:file>
</oaire:record>
<?xml version="1.0" encoding="UTF-8" ?>
<atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">
<atom:id>https://hdl.handle.net/2454/17689/ore.xml</atom:id>
<atom:source>
<atom:generator>Academica-e</atom:generator>
</atom:source>
<atom:title>A compact evolutionary interval-valued fuzzy rule-based classification system for the modeling and prediction of real-world financial applications with imbalanced data</atom:title>
<oreatom:triples>
<rdf:Description about="https://hdl.handle.net/2454/17689/ore.xml#atom">
</rdf:Description>
<rdf:Description about="https://academica-e.unavarra.es/xmlui/bitstream/2454/17689/1/IEEE_TFS_2015_Aceptada.pdf">
<dcterms:description>ORIGINAL</dcterms:description>
</rdf:Description>
<rdf:Description about="https://academica-e.unavarra.es/xmlui/bitstream/2454/17689/2/license.txt">
<dcterms:description>LICENSE</dcterms:description>
</rdf:Description>
<rdf:Description about="https://academica-e.unavarra.es/xmlui/bitstream/2454/17689/3/IEEE_TFS_2015_Aceptada.pdf.txt">
<dcterms:description>TEXT</dcterms:description>
</rdf:Description>
<rdf:Description about="https://academica-e.unavarra.es/xmlui/bitstream/2454/17689/4/IEEE_TFS_2015_Aceptada.pdf.jpg">
<dcterms:description>THUMBNAIL</dcterms:description>
</rdf:Description>
</oreatom:triples>
</atom:entry>
<?xml version="1.0" encoding="UTF-8" ?>
<qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">
<dc:title>A compact evolutionary interval-valued fuzzy rule-based classification system for the modeling and prediction of real-world financial applications with imbalanced data</dc:title>
<dc:creator>Sanz Delgado, José Antonio</dc:creator>
<dc:creator>Bernardo, Darío</dc:creator>
<dc:creator>Herrera, Francisco</dc:creator>
<dc:creator>Bustince Sola, Humberto</dc:creator>
<dc:creator>Hagras, Hani</dc:creator>
<dc:contributor>Universidad Pública de Navarra. Departamento de Automática y Computación</dc:contributor>
<dc:contributor>Nafarroako Unibertsitate Publikoa. Automatika eta Konputazioa Saila</dc:contributor>
<dc:subject>Financial applications</dc:subject>
<dc:subject>Interval-valued fuzzy sets</dc:subject>
<dc:subject>Interval-valued fuzzy rule-based classification systems</dc:subject>
<dc:subject>Evolutionary algorithms</dc:subject>
<dcterms:abstract>The current financial crisis has stressed the need of obtaining more accurate prediction models in order to decrease the risk when investing money on economic opportunities. In addition, the transparency of the process followed to make the decisions in financial applications is becoming an important issue. Furthermore, there is a need to handle the real-world imbalanced financial data sets without using sampling techniques which might introduce noise in the used data. In this paper, we present a compact evolutionary interval-valued fuzzy rule-based classification system, which is based on IVTURSFARC-HD (Interval-Valued fuzzy rule-based classification system with TUning and Rule Selection) [22]), for the modeling and prediction of real-world financial applications. This proposed system allows obtaining good predictions accuracies using a small set of short fuzzy rules implying a high degree of interpretability of the generated linguistic model. Furthermore, the proposed system deals with the financial imbalanced datasets with no need for any preprocessing or sampling method and thus avoiding the accidental introduction of noise in the data used in the learning process. The system is also provided with a mechanism to handle examples that are not covered by any fuzzy rule in the generated rule base. To test the quality of our proposal, we will present an experimental study including eleven real-world financial datasets. We will show that the proposed system outperforms the original C4.5 decision tree, type-1 and interval-valued fuzzy counterparts which use the SMOTE sampling technique to preprocess data and the original FURIA, which is a fuzzy approximative classifier. Furthermore, the proposed method enhances the results achieved by the cost sensitive C4.5 and it gives competitive results when compared with FURIA using SMOTE, while our proposal avoids pre-processing techniques and it provides interpretable models that allow obtaining more accurate results.</dcterms:abstract>
<dcterms:issued>2014</dcterms:issued>
<dc:type>Artículo / Artikulua</dc:type>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:identifier>J. A. Sanz, D. Bernardo, F. Herrera, H. Bustince and H. Hagras, "A Compact Evolutionary Interval-Valued Fuzzy Rule-Based Classification System for the Modeling and Prediction of Real-World Financial Applications With Imbalanced Data," in IEEE Transactions on Fuzzy Systems, vol. 23, no. 4, pp. 973-990, Aug. 2015. doi: 10.1109/TFUZZ.2014.2336263</dc:identifier>
<dc:identifier>1063-6706</dc:identifier>
<dc:identifier>https://hdl.handle.net/2454/17689</dc:identifier>
<dc:identifier>10.1109/TFUZZ.2014.2336263</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>IEEE Transactions on Fuzzy Systems</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/MICINN//TIN2011-28488/ES/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/MINECO//TIN2013-40765-P/ES/</dc:relation>
<dc:relation>https://dx.doi.org/10.1109/TFUZZ.2014.2336263</dc:relation>
<dc:rights>Acceso abierto / Sarbide irekia</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:rights>© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.</dc:rights>
<dc:publisher>IEEE</dc:publisher>
</qdc:qualifieddc>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">
<ow:Publication about="oai:academica-e.unavarra.es:2454/17689">
<dc:title>A compact evolutionary interval-valued fuzzy rule-based classification system for the modeling and prediction of real-world financial applications with imbalanced data</dc:title>
<dc:contributor>Universidad Pública de Navarra. Departamento de Automática y Computación</dc:contributor>
<dc:contributor>Nafarroako Unibertsitate Publikoa. Automatika eta Konputazioa Saila</dc:contributor>
<dc:subject>Financial applications</dc:subject>
<dc:subject>Interval-valued fuzzy sets</dc:subject>
<dc:subject>Interval-valued fuzzy rule-based classification systems</dc:subject>
<dc:subject>Evolutionary algorithms</dc:subject>
<dc:description>The current financial crisis has stressed the need of obtaining more accurate prediction models in order to decrease the risk when investing money on economic opportunities. In addition, the transparency of the process followed to make the decisions in financial applications is becoming an important issue. Furthermore, there is a need to handle the real-world imbalanced financial data sets without using sampling techniques which might introduce noise in the used data. In this paper, we present a compact evolutionary interval-valued fuzzy rule-based classification system, which is based on IVTURSFARC-HD (Interval-Valued fuzzy rule-based classification system with TUning and Rule Selection) [22]), for the modeling and prediction of real-world financial applications. This proposed system allows obtaining good predictions accuracies using a small set of short fuzzy rules implying a high degree of interpretability of the generated linguistic model. Furthermore, the proposed system deals with the financial imbalanced datasets with no need for any preprocessing or sampling method and thus avoiding the accidental introduction of noise in the data used in the learning process. The system is also provided with a mechanism to handle examples that are not covered by any fuzzy rule in the generated rule base. To test the quality of our proposal, we will present an experimental study including eleven real-world financial datasets. We will show that the proposed system outperforms the original C4.5 decision tree, type-1 and interval-valued fuzzy counterparts which use the SMOTE sampling technique to preprocess data and the original FURIA, which is a fuzzy approximative classifier. Furthermore, the proposed method enhances the results achieved by the cost sensitive C4.5 and it gives competitive results when compared with FURIA using SMOTE, while our proposal avoids pre-processing techniques and it provides interpretable models that allow obtaining more accurate results.</dc:description>
<dc:date>2014</dc:date>
<dc:type>Artículo / Artikulua</dc:type>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:identifier>J. A. Sanz, D. Bernardo, F. Herrera, H. Bustince and H. Hagras, "A Compact Evolutionary Interval-Valued Fuzzy Rule-Based Classification System for the Modeling and Prediction of Real-World Financial Applications With Imbalanced Data," in IEEE Transactions on Fuzzy Systems, vol. 23, no. 4, pp. 973-990, Aug. 2015. doi: 10.1109/TFUZZ.2014.2336263</dc:identifier>
<dc:identifier>1063-6706</dc:identifier>
<dc:identifier>https://hdl.handle.net/2454/17689</dc:identifier>
<dc:identifier>10.1109/TFUZZ.2014.2336263</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>IEEE Transactions on Fuzzy Systems</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/MICINN//TIN2011-28488/ES/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/MINECO//TIN2013-40765-P/ES/</dc:relation>
<dc:relation>https://dx.doi.org/10.1109/TFUZZ.2014.2336263</dc:relation>
<dc:rights>Acceso abierto / Sarbide irekia</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:rights>© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.</dc:rights>
<dc:publisher>IEEE</dc:publisher>
</ow:Publication>
</rdf:RDF>
<?xml version="1.0" encoding="UTF-8" ?>
<metadata schemaLocation="http://www.lyncode.com/xoai http://www.lyncode.com/xsd/xoai.xsd">
<element name="dc">
<element name="creator">
<element name="es_ES">
<field name="value">Sanz Delgado, José Antonio</field>
<field name="authority">7828--0000-0002-1427-9909</field>
<field name="confidence">600</field>
<field name="value">Bernardo, Darío</field>
<field name="authority">0ca2d467-3117-4bed-bc10-4cefd06ea175</field>
<field name="value">Herrera, Francisco</field>
<field name="authority">432ddfbc-2387-453a-9e81-3b457cfdbe4a</field>
<field name="value">Bustince Sola, Humberto</field>
<field name="authority">278--0000-0002-1279-6195</field>
<field name="confidence">600</field>
<field name="value">Hagras, Hani</field>
<field name="authority">0b0356dd-05ac-4632-bbdc-81d0e0d494e1</field>
</element>
</element>
<element name="date">
<element name="issued">
<element name="none">
<field name="value">2014</field>
</element>
</element>
</element>
<element name="identifier">
<element name="citation">
<element name="en">
<field name="value">J. A. Sanz, D. Bernardo, F. Herrera, H. Bustince and H. Hagras, "A Compact Evolutionary Interval-Valued Fuzzy Rule-Based Classification System for the Modeling and Prediction of Real-World Financial Applications With Imbalanced Data," in IEEE Transactions on Fuzzy Systems, vol. 23, no. 4, pp. 973-990, Aug. 2015. doi: 10.1109/TFUZZ.2014.2336263</field>
</element>
</element>
<element name="issn">
<element name="none">
<field name="value">1063-6706</field>
</element>
</element>
<element name="uri">
<element name="none">
<field name="value">https://hdl.handle.net/2454/17689</field>
</element>
</element>
<element name="doi">
<element name="none">
<field name="value">10.1109/TFUZZ.2014.2336263</field>
</element>
</element>
</element>
<element name="description">
<element name="abstract">
<element name="en">
<field name="value">The current financial crisis has stressed the need of obtaining more accurate prediction models in order to decrease the risk when investing money on economic opportunities. In addition, the transparency of the process followed to make the decisions in financial applications is becoming an important issue. Furthermore, there is a need to handle the real-world imbalanced financial data sets without using sampling techniques which might introduce noise in the used data. In this paper, we present a compact evolutionary interval-valued fuzzy rule-based classification system, which is based on IVTURSFARC-HD (Interval-Valued fuzzy rule-based classification system with TUning and Rule Selection) [22]), for the modeling and prediction of real-world financial applications. This proposed system allows obtaining good predictions accuracies using a small set of short fuzzy rules implying a high degree of interpretability of the generated linguistic model. Furthermore, the proposed system deals with the financial imbalanced datasets with no need for any preprocessing or sampling method and thus avoiding the accidental introduction of noise in the data used in the learning process. The system is also provided with a mechanism to handle examples that are not covered by any fuzzy rule in the generated rule base. To test the quality of our proposal, we will present an experimental study including eleven real-world financial datasets. We will show that the proposed system outperforms the original C4.5 decision tree, type-1 and interval-valued fuzzy counterparts which use the SMOTE sampling technique to preprocess data and the original FURIA, which is a fuzzy approximative classifier. Furthermore, the proposed method enhances the results achieved by the cost sensitive C4.5 and it gives competitive results when compared with FURIA using SMOTE, while our proposal avoids pre-processing techniques and it provides interpretable models that allow obtaining more accurate results.</field>
</element>
</element>
<element name="provenance">
<element name="en">
<field name="value">Submitted by José Antonio Sanz Delgado (joseantonio.sanz@unavarra.es) on 2015-07-27T10:07:19Z No. of bitstreams: 1 IEEE_TFS_2015_Aceptada.pdf: 690772 bytes, checksum: b287cfe40cad7940e71831ba91881bbb (MD5)</field>
<field name="value">Made available in DSpace on 2015-07-27T10:07:19Z (GMT). No. of bitstreams: 1 IEEE_TFS_2015_Aceptada.pdf: 690772 bytes, checksum: b287cfe40cad7940e71831ba91881bbb (MD5) Previous issue date: 2015</field>
</element>
</element>
<element name="sponsorship">
<element name="en">
<field name="value">This work was supported in part by the Spanish Ministry of Science and Technology under Project TIN2011-28488 and Project TIN2013-40765.</field>
</element>
</element>
</element>
<element name="format">
<element name="mimetype">
<element name="en">
<field name="value">application/pdf</field>
</element>
</element>
</element>
<element name="language">
<element name="iso">
<element name="en">
<field name="value">eng</field>
</element>
</element>
</element>
<element name="publisher">
<element name="en">
<field name="value">IEEE</field>
</element>
</element>
<element name="relation">
<element name="ispartof">
<element name="en">
<field name="value">IEEE Transactions on Fuzzy Systems</field>
</element>
</element>
<element name="projectID">
<element name="en">
<field name="value">info:eu-repo/grantAgreement/MICINN//TIN2011-28488/ES/</field>
<field name="value">info:eu-repo/grantAgreement/MINECO//TIN2013-40765-P/ES/</field>
</element>
</element>
<element name="publisherversion">
<element name="none">
<field name="value">https://dx.doi.org/10.1109/TFUZZ.2014.2336263</field>
</element>
</element>
</element>
<element name="rights">
<element name="en">
<field name="value">© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.</field>
</element>
<element name="accessRights">
<element name="es">
<field name="value">Acceso abierto / Sarbide irekia</field>
</element>
<element name="en">
<field name="value">info:eu-repo/semantics/openAccess</field>
</element>
</element>
</element>
<element name="subject">
<element name="en">
<field name="value">Financial applications</field>
<field name="value">Interval-valued fuzzy sets</field>
<field name="value">Interval-valued fuzzy rule-based classification systems</field>
<field name="value">Evolutionary algorithms</field>
</element>
</element>
<element name="title">
<element name="en">
<field name="value">A compact evolutionary interval-valued fuzzy rule-based classification system for the modeling and prediction of real-world financial applications with imbalanced data</field>
</element>
</element>
<element name="type">
<element name="es">
<field name="value">Artículo / Artikulua</field>
</element>
<element name="en">
<field name="value">info:eu-repo/semantics/article</field>
</element>
<element name="version">
<element name="es">
<field name="value">Versión aceptada / Onetsi den bertsioa</field>
</element>
<element name="en">
<field name="value">info:eu-repo/semantics/acceptedVersion</field>
</element>
</element>
</element>
<element name="contributor">
<element name="department">
<element name="es_ES">
<field name="value">Universidad Pública de Navarra. Departamento de Automática y Computación</field>
</element>
<element name="eu">
<field name="value">Nafarroako Unibertsitate Publikoa. Automatika eta Konputazioa Saila</field>
</element>
</element>
</element>
</element>
<element name="bundles">
<element name="bundle">
<field name="name">ORIGINAL</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">IEEE_TFS_2015_Aceptada.pdf</field>
<field name="originalName">IEEE_TFS_2015_Aceptada.pdf</field>
<field name="format">application/pdf</field>
<field name="size">690772</field>
<field name="url">https://academica-e.unavarra.es/xmlui/bitstream/2454/17689/1/IEEE_TFS_2015_Aceptada.pdf</field>
<field name="checksum">b287cfe40cad7940e71831ba91881bbb</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">1</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">LICENSE</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">license.txt</field>
<field name="originalName">license.txt</field>
<field name="format">text/plain; charset=utf-8</field>
<field name="size">1822</field>
<field name="url">https://academica-e.unavarra.es/xmlui/bitstream/2454/17689/2/license.txt</field>
<field name="checksum">f1b158a779256515758998ebbe33410f</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">2</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">TEXT</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">IEEE_TFS_2015_Aceptada.pdf.txt</field>
<field name="originalName">IEEE_TFS_2015_Aceptada.pdf.txt</field>
<field name="description">Extracted text</field>
<field name="format">text/plain</field>
<field name="size">105116</field>
<field name="url">https://academica-e.unavarra.es/xmlui/bitstream/2454/17689/3/IEEE_TFS_2015_Aceptada.pdf.txt</field>
<field name="checksum">ea776183685a3004ccf0a49d51e7cae9</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">3</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">THUMBNAIL</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">IEEE_TFS_2015_Aceptada.pdf.jpg</field>
<field name="originalName">IEEE_TFS_2015_Aceptada.pdf.jpg</field>
<field name="description">IM Thumbnail</field>
<field name="format">image/jpeg</field>
<field name="size">11900</field>
<field name="url">https://academica-e.unavarra.es/xmlui/bitstream/2454/17689/4/IEEE_TFS_2015_Aceptada.pdf.jpg</field>
<field name="checksum">c4d5ca1a23f8d387613a38c192c3cb65</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">4</field>
</element>
</element>
</element>
</element>
<element name="others">
<field name="handle">2454/17689</field>
<field name="identifier">oai:academica-e.unavarra.es:2454/17689</field>
<field name="lastModifyDate">2023-01-18 11:07:11.671</field>
</element>
<element name="repository">
<field name="name">Academica-e</field>
<field name="mail">academica-e@unavarra.es</field>
</element>
<element name="license">
<field name="bin">TElDRU5DSUEgREUgRElTVFJJQlVDScOTTiBOTyBFWENMVVNJVkEKCkFsIGZpcm1hciB5IHJlbWl0aXIgZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBjb25jZWRlIGEgbGEgVW5pdmVyc2lkYWQgUMO6YmxpY2EgZGUgTmF2YXJyYSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBhIHJldXRpbGl6YXIsIHRyYXNmb3JtYXIgKGVuIGxvcyB0w6lybWlub3MgZGVmaW5pZG9zIG3DoXMgYWRlbGFudGUpIHkvbyBhIGRpc3RyaWJ1aXIgZWwgZG9jdW1lbnRvIHF1ZSBsYSBhY29tcGHDsWEgKGluY2x1eWVuZG8gZWwgcmVzdW1lbikgZW4gZm9ybWF0byBpbXByZXNvIG8gZWxlY3Ryw7NuaWNvIHkgZW4gY3VhbHF1aWVyIG90cm8sIGNvbW8gcG9yIGVqZW1wbG8sIGF1ZGlvIG8gdsOtZGVvLgoKQWNlcHRhIHF1ZSBsYSBVbml2ZXJzaWRhZCBQw7pibGljYSBkZSBOYXZhcnJhIHB1ZWRhLCBzaW4gbW9kaWZpY2FyIGVsIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvLCB0cmFuc2Zvcm1hcmxvIGEgY3VhbHF1aWVyIHNvcG9ydGUgbyBmb3JtYXRvIGNvbiBmaW5lcyBkZSBwcmVzZXJ2YWNpw7NuLgoKVGFtYmnDqW4gYWNlcHRhIHF1ZSBsYSBVbml2ZXJzaWRhZCBQw7pibGljYSBkZSBOYXZhcnJhIHB1ZWRhIGd1YXJkYXIgbcOhcyBkZSB1bmEgY29waWEgZGUgw6lsIGNvbiBmaW5lcyBkZSBzZWd1cmlkYWQgeSBwcmVzZXJ2YWNpw7NuLiAKCk1hbmlmaWVzdGEgcXVlIGVzdGUgZG9jdW1lbnRvIGVzIG9icmEgb3JpZ2luYWwgc3V5YSB5IHF1ZSB0aWVuZSBkZXJlY2hvIGEgY2VkZXIgbG9zIGRlcmVjaG9zIHF1ZSBzZSBleHByZXNhbiBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBtYW5pZmllc3RhIHF1ZSwgaGFzdGEgZG9uZGUgc2FiZSwgbm8gaW5mcmluZ2UgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG90cm9zLiAKClNpIGVzdGUgZG9jdW1lbnRvIGNvbnRpZW5lIG1hdGVyaWFsIHNvYnJlIGVsIHF1ZSB1c3RlZCBubyB0aWVuZSBkZXJlY2hvcyBkZSBhdXRvciwgbWFuaWZpZXN0YSBxdWUgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBzaW4gcmVzdHJpY2Npb25lcyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgY2VkZXIgYSBsYSBVbml2ZXJzaWRhZCBQw7pibGljYSBkZSBOYXZhcnJhIGxvcyBkZXJlY2hvcyBleGlnaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSB5IHF1ZSBlbCBtYXRlcmlhbCBwZXJ0ZW5lY2llbnRlIGEgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGRlbnRybyBkZWwgdGV4dG8gbyBlbCBjb250ZW5pZG8gZGUgZXN0ZSBkb2N1bWVudG8uIAoKU2kgZXN0ZSBkb2N1bWVudG8gZXN0w6EgYmFzYWRvIGVuIHVuYSBvYnJhIHF1ZSBoYSBzaWRvIHBhdHJvY2luYWRhIG8gcHJvbW92aWRhIHBvciB1biBvcmdhbmlzbW8gZGlzdGludG8gZGUgbGEgVW5pdmVyc2lkYWQgUMO6YmxpY2EgZGUgTmF2YXJyYSwgdXN0ZWQgYWNlcHRhIHF1ZSBoYSBzYXRpc2ZlY2hvIGN1YWxxdWllciBkZXJlY2hvIGRlIHJldmlzacOzbiB5IGRlbcOhcyBvYmxpZ2FjaW9uZXMgZXhpZ2lkYXMgcG9yIGRpY2hvIGNvbnRyYXRvIG8gYWN1ZXJkby4KCkxhIFVuaXZlcnNpZGFkIFDDumJsaWNhIGRlIE5hdmFycmEgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIHN1KHMpIG5vbWJyZShzKSBjb21vIGF1dG9yKGVzKSBvIHByb3BpZXRhcmlvKHMpIGRlIGVzdGUgZG9jdW1lbnRvIHkgbm8gaGFyw6EgY2FtYmlvcyBxdWUgbm8gc2VhbiBsb3MgcGVybWl0aWRvcyBwb3IgZXN0YSBsaWNlbmNpYS4KCg==</field>
</element>
</metadata>