<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>A Bayesian approach to robust identification: application to fault detection</dc:title>
<dc:creator>Fernández Canti, Rosa Ma.</dc:creator>
<dc:contributor>Puig Cayuela, Vicenç</dc:contributor>
<dc:contributor>Blesa Izquierdo, Joaquim</dc:contributor>
<dc:contributor>Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions</dc:contributor>
<dc:subject>621.3</dc:subject>
<dc:subject>68</dc:subject>
<dc:description>In the Control Engineering field, the so-called Robust Identification techniques deal with the problem of obtaining not only a nominal model of the plant, but also an estimate of the uncertainty associated to the nominal model. Such model of uncertainty is typically characterized as a region in the parameter space or as an uncertainty band around the frequency response of the nominal model. Uncertainty models have been widely used in the design of robust controllers and, recently, their use in model-based fault detection procedures is increasing. In this later case, consistency between new measurements and the uncertainty region is checked. When an inconsistency is found, the existence of a fault is decided. There exist two main approaches to the modeling of model uncertainty: the deterministic/worst case methods and the stochastic/probabilistic methods. At present, there are a number of different methods, e.g., model error modeling, set-membership identification and non-stationary stochastic embedding. In this dissertation we summarize the main procedures and illustrate their results by means of several examples of the literature. As contribution we propose a Bayesian methodology to solve the robust identification problem. The approach is highly unifying since many robust identification techniques can be interpreted as particular cases of the Bayesian framework. Also, the methodology can deal with non-linear structures such as the ones derived from the use of observers. The obtained Bayesian uncertainty models are used to detect faults in a quadruple-tank process and in a three-bladed wind turbine.</dc:description>
<dc:date>2013-06-11T12:02:09Z</dc:date>
<dc:date>2013-06-11T12:02:09Z</dc:date>
<dc:date>2013-02-07</dc:date>
<dc:type>info:eu-repo/semantics/doctoralThesis</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:identifier>http://hdl.handle.net/10803/116329</dc:identifier>
<dc:identifier>B. 16897-2013</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:format>216 p.</dc:format>
<dc:format>application/pdf</dc:format>
<dc:format>application/pdf</dc:format>
<dc:publisher>Universitat Politècnica de Catalunya</dc:publisher>
<dc:source>TDX (Tesis Doctorals en Xarxa)</dc:source>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<dim:dim schemaLocation="http://www.dspace.org/xmlns/dspace/dim http://www.dspace.org/schema/dim.xsd">
<dim:field element="contributor" mdschema="dc">Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions</dim:field>
<dim:field authority="3ab64cec-e890-4592-8a2c-da4425c9bc7b" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Fernández Canti, Rosa Ma.</dim:field>
<dim:field element="contributor" mdschema="dc" qualifier="authoremail">rfernandez@tsc.upc.edu</dim:field>
<dim:field element="contributor" mdschema="dc" qualifier="authoremailshow">false</dim:field>
<dim:field authority="f0d29e8c-670e-492e-9e32-25fac1ca6e44" confidence="-1" element="contributor" mdschema="dc" qualifier="director">Puig Cayuela, Vicenç</dim:field>
<dim:field authority="750a5e61-b889-4cae-a236-c2aa47c6979e" confidence="-1" element="contributor" mdschema="dc" qualifier="codirector">Blesa Izquierdo, Joaquim</dim:field>
<dim:field element="contributor" mdschema="dc" qualifier="authorsendemail">true</dim:field>
<dim:field element="date" mdschema="dc" qualifier="accessioned">2013-06-11T12:02:09Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="available">2013-06-11T12:02:09Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="issued">2013-02-07</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="uri">http://hdl.handle.net/10803/116329</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="dl">B. 16897-2013</dim:field>
<dim:field element="description" lang="cat" mdschema="dc" qualifier="abstract">In the Control Engineering field, the so-called Robust Identification techniques deal with the problem of obtaining not only a nominal model of the plant, but also an estimate of the uncertainty associated to the nominal model. Such model of uncertainty is typically characterized as a region in the parameter space or as an uncertainty band around the frequency response of the nominal model. Uncertainty models have been widely used in the design of robust controllers and, recently, their use in model-based fault detection procedures is increasing. In this later case, consistency between new measurements and the uncertainty region is checked. When an inconsistency is found, the existence of a fault is decided. There exist two main approaches to the modeling of model uncertainty: the deterministic/worst case methods and the stochastic/probabilistic methods. At present, there are a number of different methods, e.g., model error modeling, set-membership identification and non-stationary stochastic embedding. In this dissertation we summarize the main procedures and illustrate their results by means of several examples of the literature. As contribution we propose a Bayesian methodology to solve the robust identification problem. The approach is highly unifying since many robust identification techniques can be interpreted as particular cases of the Bayesian framework. Also, the methodology can deal with non-linear structures such as the ones derived from the use of observers. The obtained Bayesian uncertainty models are used to detect faults in a quadruple-tank process and in a three-bladed wind turbine.</dim:field>
<dim:field element="format" mdschema="dc" qualifier="extent">216 p.</dim:field>
<dim:field element="format" mdschema="dc" qualifier="mimetype">application/pdf</dim:field>
<dim:field element="language" mdschema="dc" qualifier="iso">eng</dim:field>
<dim:field element="publisher" mdschema="dc">Universitat Politècnica de Catalunya</dim:field>
<dim:field element="rights" mdschema="dc" qualifier="license">ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</dim:field>
<dim:field element="rights" mdschema="dc" qualifier="accessLevel">info:eu-repo/semantics/openAccess</dim:field>
<dim:field element="source" mdschema="dc">TDX (Tesis Doctorals en Xarxa)</dim:field>
<dim:field element="title" mdschema="dc">A Bayesian approach to robust identification: application to fault detection</dim:field>
<dim:field element="type" mdschema="dc">info:eu-repo/semantics/doctoralThesis</dim:field>
<dim:field element="type" mdschema="dc">info:eu-repo/semantics/publishedVersion</dim:field>
<dim:field element="subject" lang="cat" mdschema="dc" qualifier="udc">621.3</dim:field>
<dim:field element="subject" lang="cat" mdschema="dc" qualifier="udc">68</dim:field>
<dim:field element="embargo" mdschema="dc" qualifier="terms">cap</dim:field>
</dim:dim>
<?xml version="1.0" encoding="UTF-8" ?>
<thesis schemaLocation="http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd">
<title>A Bayesian approach to robust identification: application to fault detection</title>
<creator>Fernández Canti, Rosa Ma.</creator>
<contributor>rfernandez@tsc.upc.edu</contributor>
<contributor>false</contributor>
<contributor>Puig Cayuela, Vicenç</contributor>
<contributor>Blesa Izquierdo, Joaquim</contributor>
<contributor>true</contributor>
<description>In the Control Engineering field, the so-called Robust Identification techniques deal with the problem of obtaining not only a nominal model of the plant, but also an estimate of the uncertainty associated to the nominal model. Such model of uncertainty is typically characterized as a region in the parameter space or as an uncertainty band around the frequency response of the nominal model. Uncertainty models have been widely used in the design of robust controllers and, recently, their use in model-based fault detection procedures is increasing. In this later case, consistency between new measurements and the uncertainty region is checked. When an inconsistency is found, the existence of a fault is decided. There exist two main approaches to the modeling of model uncertainty: the deterministic/worst case methods and the stochastic/probabilistic methods. At present, there are a number of different methods, e.g., model error modeling, set-membership identification and non-stationary stochastic embedding. In this dissertation we summarize the main procedures and illustrate their results by means of several examples of the literature. As contribution we propose a Bayesian methodology to solve the robust identification problem. The approach is highly unifying since many robust identification techniques can be interpreted as particular cases of the Bayesian framework. Also, the methodology can deal with non-linear structures such as the ones derived from the use of observers. The obtained Bayesian uncertainty models are used to detect faults in a quadruple-tank process and in a three-bladed wind turbine.</description>
<date>2013-06-11</date>
<date>2013-06-11</date>
<date>2013-02-07</date>
<type>info:eu-repo/semantics/doctoralThesis</type>
<type>info:eu-repo/semantics/publishedVersion</type>
<identifier>http://hdl.handle.net/10803/116329</identifier>
<identifier>B. 16897-2013</identifier>
<language>eng</language>
<rights>ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</rights>
<rights>info:eu-repo/semantics/openAccess</rights>
<publisher>Universitat Politècnica de Catalunya</publisher>
<source>TDX (Tesis Doctorals en Xarxa)</source>
</thesis>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>00925njm 22002777a 4500</leader>
<datafield ind1=" " ind2=" " tag="042">
<subfield code="a">dc</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Fernández Canti, Rosa Ma.</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="260">
<subfield code="c">2013-02-07</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">In the Control Engineering field, the so-called Robust Identification techniques deal with the problem of obtaining not only a nominal model of the plant, but also an estimate of the uncertainty associated to the nominal model. Such model of uncertainty is typically characterized as a region in the parameter space or as an uncertainty band around the frequency response of the nominal model. Uncertainty models have been widely used in the design of robust controllers and, recently, their use in model-based fault detection procedures is increasing. In this later case, consistency between new measurements and the uncertainty region is checked. When an inconsistency is found, the existence of a fault is decided. There exist two main approaches to the modeling of model uncertainty: the deterministic/worst case methods and the stochastic/probabilistic methods. At present, there are a number of different methods, e.g., model error modeling, set-membership identification and non-stationary stochastic embedding. In this dissertation we summarize the main procedures and illustrate their results by means of several examples of the literature. As contribution we propose a Bayesian methodology to solve the robust identification problem. The approach is highly unifying since many robust identification techniques can be interpreted as particular cases of the Bayesian framework. Also, the methodology can deal with non-linear structures such as the ones derived from the use of observers. The obtained Bayesian uncertainty models are used to detect faults in a quadruple-tank process and in a three-bladed wind turbine.</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">http://hdl.handle.net/10803/116329</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">B. 16897-2013</subfield>
</datafield>
<datafield ind1="0" ind2="0" tag="245">
<subfield code="a">A Bayesian approach to robust identification: application to fault detection</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>nam a 5i 4500</leader>
<datafield ind1="1" ind2="0" tag="245">
<subfield code="a">A Bayesian approach to robust identification: application to fault detection</subfield>
</datafield>
<datafield ind1=" " ind2="1" tag="264">
<subfield code="a">[Barcelona] :</subfield>
<subfield code="b">Universitat Politècnica de Catalunya,</subfield>
<subfield code="c">2013</subfield>
</datafield>
<datafield ind1="4" ind2="0" tag="856">
<subfield code="z">Accés lliure</subfield>
<subfield code="u">http://hdl.handle.net/10803/116329</subfield>
</datafield>
<controlfield tag="007">cr |||||||||||</controlfield>
<controlfield tag="008">AAMMDDs2013 sp ||||fsm||||0|| 0 eng|c</controlfield>
<datafield ind1="1" ind2=" " tag="100">
<subfield code="a">Fernández Canti, Rosa Ma.,</subfield>
<subfield code="e">autor</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="300">
<subfield code="a">1 recurs en línia (216 pàgines)</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="502">
<subfield code="g">Tesi</subfield>
<subfield code="b">Doctorat</subfield>
<subfield code="c">Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions</subfield>
<subfield code="d">2013</subfield>
</datafield>
<datafield ind1="2" ind2=" " tag="710">
<subfield code="a">Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions</subfield>
</datafield>
<datafield ind1=" " ind2="4" tag="655">
<subfield code="a">Tesis i dissertacions electròniques</subfield>
</datafield>
<datafield ind1="1" ind2=" " tag="700">
<subfield code="a">Puig Cayuela, Vicenç,</subfield>
<subfield code="e">supervisor acadèmic</subfield>
</datafield>
<datafield ind1="1" ind2=" " tag="700">
<subfield code="a">Blesa Izquierdo, Joaquim,</subfield>
<subfield code="e">supervisor acadèmic</subfield>
</datafield>
<datafield ind1="0" ind2=" " tag="730">
<subfield code="a">TDX</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">In the Control Engineering field, the so-called Robust Identification techniques deal with the problem of obtaining not only a nominal model of the plant, but also an estimate of the uncertainty associated to the nominal model. Such model of uncertainty is typically characterized as a region in the parameter space or as an uncertainty band around the frequency response of the nominal model. Uncertainty models have been widely used in the design of robust controllers and, recently, their use in model-based fault detection procedures is increasing. In this later case, consistency between new measurements and the uncertainty region is checked. When an inconsistency is found, the existence of a fault is decided. There exist two main approaches to the modeling of model uncertainty: the deterministic/worst case methods and the stochastic/probabilistic methods. At present, there are a number of different methods, e.g., model error modeling, set-membership identification and non-stationary stochastic embedding. In this dissertation we summarize the main procedures and illustrate their results by means of several examples of the literature. As contribution we propose a Bayesian methodology to solve the robust identification problem. The approach is highly unifying since many robust identification techniques can be interpreted as particular cases of the Bayesian framework. Also, the methodology can deal with non-linear structures such as the ones derived from the use of observers. The obtained Bayesian uncertainty models are used to detect faults in a quadruple-tank process and in a three-bladed wind turbine.</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="998">
<subfield code="a">p</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="040">
<subfield code="a">ES-BaCBU</subfield>
<subfield code="b">cat</subfield>
<subfield code="e">rda</subfield>
<subfield code="c">ES-BaCBU</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="336">
<subfield code="a">text</subfield>
<subfield code="b">txt</subfield>
<subfield code="2">rdacontent</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="337">
<subfield code="a">informàtic</subfield>
<subfield code="b">c</subfield>
<subfield code="2">rdamedia</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="338">
<subfield code="a">recurs en línia</subfield>
<subfield code="b">cr</subfield>
<subfield code="2">rdacarrier</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<mets ID=" DSpace_ITEM_10803-116329" OBJID=" hdl:10803/116329" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">
<metsHdr CREATEDATE="2024-10-03T02:56:42Z">
<agent ROLE="CUSTODIAN" TYPE="ORGANIZATION">
<name>TDX (Tesis Doctorals en Xarxa)</name>
</agent>
</metsHdr>
<dmdSec ID="DMD_10803_116329">
<mdWrap MDTYPE="MODS">
<xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Fernández Canti, Rosa Ma.</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">authoremail</mods:roleTerm>
</mods:role>
<mods:namePart>rfernandez@tsc.upc.edu</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">authoremailshow</mods:roleTerm>
</mods:role>
<mods:namePart>false</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">director</mods:roleTerm>
</mods:role>
<mods:namePart>Puig Cayuela, Vicenç</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">codirector</mods:roleTerm>
</mods:role>
<mods:namePart>Blesa Izquierdo, Joaquim</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">authorsendemail</mods:roleTerm>
</mods:role>
<mods:namePart>true</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2013-06-11T12:02:09Z</mods:dateAccessioned>
</mods:extension>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2013-06-11T12:02:09Z</mods:dateAvailable>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2013-02-07</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="uri">http://hdl.handle.net/10803/116329</mods:identifier>
<mods:identifier type="dl">B. 16897-2013</mods:identifier>
<mods:abstract>In the Control Engineering field, the so-called Robust Identification techniques deal with the problem of obtaining not only a nominal model of the plant, but also an estimate of the uncertainty associated to the nominal model. Such model of uncertainty is typically characterized as a region in the parameter space or as an uncertainty band around the frequency response of the nominal model. Uncertainty models have been widely used in the design of robust controllers and, recently, their use in model-based fault detection procedures is increasing. In this later case, consistency between new measurements and the uncertainty region is checked. When an inconsistency is found, the existence of a fault is decided. There exist two main approaches to the modeling of model uncertainty: the deterministic/worst case methods and the stochastic/probabilistic methods. At present, there are a number of different methods, e.g., model error modeling, set-membership identification and non-stationary stochastic embedding. In this dissertation we summarize the main procedures and illustrate their results by means of several examples of the literature. As contribution we propose a Bayesian methodology to solve the robust identification problem. The approach is highly unifying since many robust identification techniques can be interpreted as particular cases of the Bayesian framework. Also, the methodology can deal with non-linear structures such as the ones derived from the use of observers. The obtained Bayesian uncertainty models are used to detect faults in a quadruple-tank process and in a three-bladed wind turbine.</mods:abstract>
<mods:language>
<mods:languageTerm authority="rfc3066">eng</mods:languageTerm>
</mods:language>
<mods:titleInfo>
<mods:title>A Bayesian approach to robust identification: application to fault detection</mods:title>
</mods:titleInfo>
<mods:genre>info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/publishedVersion</mods:genre>
</mods:mods>
</xmlData>
</mdWrap>
</dmdSec>
<amdSec ID="FO_10803_116329_2">
<techMD ID="TECH_O_10803_116329_2">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>https://www.tdx.cat/bitstream/10803/116329/2/TRFC1de1.pdf</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>11febcd6b58b620a5ece1c7b6f24db07</premis:messageDigest>
</premis:fixity>
<premis:size>8997877</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>application/pdf</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>TRFC1de1.pdf</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<amdSec ID="FT_10803_116329_3">
<techMD ID="TECH_T_10803_116329_3">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>https://www.tdx.cat/bitstream/10803/116329/3/TRFC1de1.pdf.txt</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>6363ebb81b6f4217d859a82d6be5a221</premis:messageDigest>
</premis:fixity>
<premis:size>378350</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>text/plain</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>TRFC1de1.pdf.txt</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<fileSec>
<fileGrp USE="ORIGINAL">
<file ADMID="FO_10803_116329_2" CHECKSUM="11febcd6b58b620a5ece1c7b6f24db07" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_10803_116329_2" ID="BITSTREAM_ORIGINAL_10803_116329_2" MIMETYPE="application/pdf" SEQ="2" SIZE="8997877">
</file>
</fileGrp>
<fileGrp USE="TEXT">
<file ADMID="FT_10803_116329_3" CHECKSUM="6363ebb81b6f4217d859a82d6be5a221" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_10803_116329_3" ID="BITSTREAM_TEXT_10803_116329_3" MIMETYPE="text/plain" SEQ="3" SIZE="378350">
</file>
</fileGrp>
</fileSec>
<structMap LABEL="DSpace Object" TYPE="LOGICAL">
<div ADMID="DMD_10803_116329" TYPE="DSpace Object Contents">
<div TYPE="DSpace BITSTREAM">
</div>
</div>
</structMap>
</mets>
<?xml version="1.0" encoding="UTF-8" ?>
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:namePart>Fernández Canti, Rosa Ma.</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2013-06-11T12:02:09Z</mods:dateAvailable>
</mods:extension>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2013-06-11T12:02:09Z</mods:dateAccessioned>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2013-02-07</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="uri">http://hdl.handle.net/10803/116329</mods:identifier>
<mods:identifier type="dl">B. 16897-2013</mods:identifier>
<mods:abstract>In the Control Engineering field, the so-called Robust Identification techniques deal with the problem of obtaining not only a nominal model of the plant, but also an estimate of the uncertainty associated to the nominal model. Such model of uncertainty is typically characterized as a region in the parameter space or as an uncertainty band around the frequency response of the nominal model. Uncertainty models have been widely used in the design of robust controllers and, recently, their use in model-based fault detection procedures is increasing. In this later case, consistency between new measurements and the uncertainty region is checked. When an inconsistency is found, the existence of a fault is decided. There exist two main approaches to the modeling of model uncertainty: the deterministic/worst case methods and the stochastic/probabilistic methods. At present, there are a number of different methods, e.g., model error modeling, set-membership identification and non-stationary stochastic embedding. In this dissertation we summarize the main procedures and illustrate their results by means of several examples of the literature. As contribution we propose a Bayesian methodology to solve the robust identification problem. The approach is highly unifying since many robust identification techniques can be interpreted as particular cases of the Bayesian framework. Also, the methodology can deal with non-linear structures such as the ones derived from the use of observers. The obtained Bayesian uncertainty models are used to detect faults in a quadruple-tank process and in a three-bladed wind turbine.</mods:abstract>
<mods:language>
<mods:languageTerm>eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">info:eu-repo/semantics/openAccess</mods:accessCondition>
<mods:titleInfo>
<mods:title>A Bayesian approach to robust identification: application to fault detection</mods:title>
</mods:titleInfo>
<mods:genre>info:eu-repo/semantics/doctoralThesis</mods:genre>
<mods:genre>info:eu-repo/semantics/publishedVersion</mods:genre>
</mods:mods>
<?xml version="1.0" encoding="UTF-8" ?>
<oaire:record schemaLocation="http://namespaceopenaire.eu/schema/oaire/">
<dc:title>A Bayesian approach to robust identification: application to fault detection</dc:title>
<datacite:creator>
<datacite:creatorName>Fernández Canti, Rosa Ma.</datacite:creatorName>
</datacite:creator>
<datacite:contributor>rfernandez@tsc.upc.edu</datacite:contributor>
<datacite:contributor>false</datacite:contributor>
<datacite:contributor>Puig Cayuela, Vicenç</datacite:contributor>
<datacite:contributor>Blesa Izquierdo, Joaquim</datacite:contributor>
<datacite:contributor>true</datacite:contributor>
<datacite:contributor>Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions</datacite:contributor>
<dc:subject>621.3</dc:subject>
<dc:subject>68</dc:subject>
<dc:description>In the Control Engineering field, the so-called Robust Identification techniques deal with the problem of obtaining not only a nominal model of the plant, but also an estimate of the uncertainty associated to the nominal model. Such model of uncertainty is typically characterized as a region in the parameter space or as an uncertainty band around the frequency response of the nominal model. Uncertainty models have been widely used in the design of robust controllers and, recently, their use in model-based fault detection procedures is increasing. In this later case, consistency between new measurements and the uncertainty region is checked. When an inconsistency is found, the existence of a fault is decided. There exist two main approaches to the modeling of model uncertainty: the deterministic/worst case methods and the stochastic/probabilistic methods. At present, there are a number of different methods, e.g., model error modeling, set-membership identification and non-stationary stochastic embedding. In this dissertation we summarize the main procedures and illustrate their results by means of several examples of the literature. As contribution we propose a Bayesian methodology to solve the robust identification problem. The approach is highly unifying since many robust identification techniques can be interpreted as particular cases of the Bayesian framework. Also, the methodology can deal with non-linear structures such as the ones derived from the use of observers. The obtained Bayesian uncertainty models are used to detect faults in a quadruple-tank process and in a three-bladed wind turbine.</dc:description>
<dc:date>2013-06-11T12:02:09Z</dc:date>
<dc:date>2013-06-11T12:02:09Z</dc:date>
<dc:date>2013-02-07</dc:date>
<dc:type>info:eu-repo/semantics/doctoralThesis</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<datacite:alternateIdentifier>http://hdl.handle.net/10803/116329</datacite:alternateIdentifier>
<datacite:alternateIdentifier>B. 16897-2013</datacite:alternateIdentifier>
<dc:language>eng</dc:language>
<dc:rights>ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:format>216 p.</dc:format>
<dc:format>application/pdf</dc:format>
<dc:format>application/pdf</dc:format>
<dc:publisher>Universitat Politècnica de Catalunya</dc:publisher>
<dc:source>TDX (Tesis Doctorals en Xarxa)</dc:source>
<oaire:file>https://www.tdx.cat/bitstream/10803/116329/2/TRFC1de1.pdf</oaire:file>
</oaire:record>
<?xml version="1.0" encoding="UTF-8" ?>
<atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">
<atom:id>http://hdl.handle.net/10803/116329/ore.xml</atom:id>
<atom:published>2013-06-11T12:02:09Z</atom:published>
<atom:updated>2013-06-11T12:02:09Z</atom:updated>
<atom:source>
<atom:generator>TDX (Tesis Doctorals en Xarxa)</atom:generator>
</atom:source>
<atom:title>A Bayesian approach to robust identification: application to fault detection</atom:title>
<atom:author>
<atom:name>Fernández Canti, Rosa Ma.</atom:name>
</atom:author>
<oreatom:triples>
<rdf:Description about="http://hdl.handle.net/10803/116329/ore.xml#atom">
<dcterms:modified>2013-06-11T12:02:09Z</dcterms:modified>
</rdf:Description>
<rdf:Description about="https://www.tdx.cat/bitstream/10803/116329/2/TRFC1de1.pdf">
<dcterms:description>ORIGINAL</dcterms:description>
</rdf:Description>
<rdf:Description about="https://www.tdx.cat/bitstream/10803/116329/3/TRFC1de1.pdf.txt">
<dcterms:description>TEXT</dcterms:description>
</rdf:Description>
<rdf:Description about="https://www.tdx.cat/bitstream/10803/116329/4/TRFC1de1.pdf.xml">
<dcterms:description>MEDIA_DOCUMENT</dcterms:description>
</rdf:Description>
</oreatom:triples>
</atom:entry>
<?xml version="1.0" encoding="UTF-8" ?>
<qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">
<dc:title>A Bayesian approach to robust identification: application to fault detection</dc:title>
<dc:creator>Fernández Canti, Rosa Ma.</dc:creator>
<dc:contributor>Puig Cayuela, Vicenç</dc:contributor>
<dc:contributor>Blesa Izquierdo, Joaquim</dc:contributor>
<dcterms:abstract>In the Control Engineering field, the so-called Robust Identification techniques deal with the problem of obtaining not only a nominal model of the plant, but also an estimate of the uncertainty associated to the nominal model. Such model of uncertainty is typically characterized as a region in the parameter space or as an uncertainty band around the frequency response of the nominal model. Uncertainty models have been widely used in the design of robust controllers and, recently, their use in model-based fault detection procedures is increasing. In this later case, consistency between new measurements and the uncertainty region is checked. When an inconsistency is found, the existence of a fault is decided. There exist two main approaches to the modeling of model uncertainty: the deterministic/worst case methods and the stochastic/probabilistic methods. At present, there are a number of different methods, e.g., model error modeling, set-membership identification and non-stationary stochastic embedding. In this dissertation we summarize the main procedures and illustrate their results by means of several examples of the literature. As contribution we propose a Bayesian methodology to solve the robust identification problem. The approach is highly unifying since many robust identification techniques can be interpreted as particular cases of the Bayesian framework. Also, the methodology can deal with non-linear structures such as the ones derived from the use of observers. The obtained Bayesian uncertainty models are used to detect faults in a quadruple-tank process and in a three-bladed wind turbine.</dcterms:abstract>
<dcterms:dateAccepted>2013-06-11T12:02:09Z</dcterms:dateAccepted>
<dcterms:available>2013-06-11T12:02:09Z</dcterms:available>
<dcterms:created>2013-06-11T12:02:09Z</dcterms:created>
<dcterms:issued>2013-02-07</dcterms:issued>
<dc:type>info:eu-repo/semantics/doctoralThesis</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:identifier>http://hdl.handle.net/10803/116329</dc:identifier>
<dc:identifier>B. 16897-2013</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:publisher>Universitat Politècnica de Catalunya</dc:publisher>
<dc:source>TDX (Tesis Doctorals en Xarxa)</dc:source>
</qdc:qualifieddc>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">
<ow:Publication about="oai:www.tdx.cat:10803/116329">
<dc:title>A Bayesian approach to robust identification: application to fault detection</dc:title>
<dc:creator>Fernández Canti, Rosa Ma.</dc:creator>
<dc:contributor>rfernandez@tsc.upc.edu</dc:contributor>
<dc:contributor>false</dc:contributor>
<dc:contributor>Puig Cayuela, Vicenç</dc:contributor>
<dc:contributor>Blesa Izquierdo, Joaquim</dc:contributor>
<dc:contributor>true</dc:contributor>
<dc:description>In the Control Engineering field, the so-called Robust Identification techniques deal with the problem of obtaining not only a nominal model of the plant, but also an estimate of the uncertainty associated to the nominal model. Such model of uncertainty is typically characterized as a region in the parameter space or as an uncertainty band around the frequency response of the nominal model. Uncertainty models have been widely used in the design of robust controllers and, recently, their use in model-based fault detection procedures is increasing. In this later case, consistency between new measurements and the uncertainty region is checked. When an inconsistency is found, the existence of a fault is decided. There exist two main approaches to the modeling of model uncertainty: the deterministic/worst case methods and the stochastic/probabilistic methods. At present, there are a number of different methods, e.g., model error modeling, set-membership identification and non-stationary stochastic embedding. In this dissertation we summarize the main procedures and illustrate their results by means of several examples of the literature. As contribution we propose a Bayesian methodology to solve the robust identification problem. The approach is highly unifying since many robust identification techniques can be interpreted as particular cases of the Bayesian framework. Also, the methodology can deal with non-linear structures such as the ones derived from the use of observers. The obtained Bayesian uncertainty models are used to detect faults in a quadruple-tank process and in a three-bladed wind turbine.</dc:description>
<dc:date>2013-06-11T12:02:09Z</dc:date>
<dc:date>2013-06-11T12:02:09Z</dc:date>
<dc:date>2013-02-07</dc:date>
<dc:type>info:eu-repo/semantics/doctoralThesis</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:identifier>http://hdl.handle.net/10803/116329</dc:identifier>
<dc:identifier>B. 16897-2013</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:publisher>Universitat Politècnica de Catalunya</dc:publisher>
<dc:source>TDX (Tesis Doctorals en Xarxa)</dc:source>
</ow:Publication>
</rdf:RDF>
<?xml version="1.0" encoding="UTF-8" ?>
<uketd_dc:uketddc schemaLocation="http://naca.central.cranfield.ac.uk/ethos-oai/2.0/ http://naca.central.cranfield.ac.uk/ethos-oai/2.0/uketd_dc.xsd">
<dc:title>A Bayesian approach to robust identification: application to fault detection</dc:title>
<dc:creator>Fernández Canti, Rosa Ma.</dc:creator>
<dcterms:abstract>In the Control Engineering field, the so-called Robust Identification techniques deal with the problem of obtaining not only a nominal model of the plant, but also an estimate of the uncertainty associated to the nominal model. Such model of uncertainty is typically characterized as a region in the parameter space or as an uncertainty band around the frequency response of the nominal model. Uncertainty models have been widely used in the design of robust controllers and, recently, their use in model-based fault detection procedures is increasing. In this later case, consistency between new measurements and the uncertainty region is checked. When an inconsistency is found, the existence of a fault is decided. There exist two main approaches to the modeling of model uncertainty: the deterministic/worst case methods and the stochastic/probabilistic methods. At present, there are a number of different methods, e.g., model error modeling, set-membership identification and non-stationary stochastic embedding. In this dissertation we summarize the main procedures and illustrate their results by means of several examples of the literature. As contribution we propose a Bayesian methodology to solve the robust identification problem. The approach is highly unifying since many robust identification techniques can be interpreted as particular cases of the Bayesian framework. Also, the methodology can deal with non-linear structures such as the ones derived from the use of observers. The obtained Bayesian uncertainty models are used to detect faults in a quadruple-tank process and in a three-bladed wind turbine.</dcterms:abstract>
<uketdterms:institution>Universitat Politècnica de Catalunya</uketdterms:institution>
<dcterms:issued>2013-02-07</dcterms:issued>
<dc:type>info:eu-repo/semantics/doctoralThesis</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:language type="dcterms:ISO639-2">eng</dc:language>
<dcterms:isReferencedBy>http://hdl.handle.net/10803/116329</dcterms:isReferencedBy>
<dc:identifier type="dcterms:URI">https://www.tdx.cat/bitstream/10803/116329/2/TRFC1de1.pdf</dc:identifier>
<uketdterms:checksum type="uketdterms:MD5">11febcd6b58b620a5ece1c7b6f24db07</uketdterms:checksum>
<dcterms:hasFormat>https://www.tdx.cat/bitstream/10803/116329/3/TRFC1de1.pdf.txt</dcterms:hasFormat>
<uketdterms:checksum type="uketdterms:MD5">6363ebb81b6f4217d859a82d6be5a221</uketdterms:checksum>
<uketdterms:embargodate>cap</uketdterms:embargodate>
</uketd_dc:uketddc>
<?xml version="1.0" encoding="UTF-8" ?>
<metadata schemaLocation="http://www.lyncode.com/xoai http://www.lyncode.com/xsd/xoai.xsd">
<element name="dc">
<element name="contributor">
<element name="none">
<field name="value">Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions</field>
</element>
<element name="author">
<element name="none">
<field name="value">Fernández Canti, Rosa Ma.</field>
<field name="authority">3ab64cec-e890-4592-8a2c-da4425c9bc7b</field>
<field name="confidence">-1</field>
</element>
</element>
<element name="authoremail">
<element name="none">
<field name="value">rfernandez@tsc.upc.edu</field>
</element>
</element>
<element name="authoremailshow">
<element name="none">
<field name="value">false</field>
</element>
</element>
<element name="director">
<element name="none">
<field name="value">Puig Cayuela, Vicenç</field>
<field name="authority">f0d29e8c-670e-492e-9e32-25fac1ca6e44</field>
<field name="confidence">-1</field>
</element>
</element>
<element name="codirector">
<element name="none">
<field name="value">Blesa Izquierdo, Joaquim</field>
<field name="authority">750a5e61-b889-4cae-a236-c2aa47c6979e</field>
<field name="confidence">-1</field>
</element>
</element>
<element name="authorsendemail">
<element name="none">
<field name="value">true</field>
</element>
</element>
</element>
<element name="date">
<element name="accessioned">
<element name="none">
<field name="value">2013-06-11T12:02:09Z</field>
</element>
</element>
<element name="available">
<element name="none">
<field name="value">2013-06-11T12:02:09Z</field>
</element>
</element>
<element name="issued">
<element name="none">
<field name="value">2013-02-07</field>
</element>
</element>
</element>
<element name="identifier">
<element name="uri">
<element name="none">
<field name="value">http://hdl.handle.net/10803/116329</field>
</element>
</element>
<element name="dl">
<element name="none">
<field name="value">B. 16897-2013</field>
</element>
</element>
</element>
<element name="description">
<element name="abstract">
<element name="cat">
<field name="value">In the Control Engineering field, the so-called Robust Identification techniques deal with the problem of obtaining not only a nominal model of the plant, but also an estimate of the uncertainty associated to the nominal model. Such model of uncertainty is typically characterized as a region in the parameter space or as an uncertainty band around the frequency response of the nominal model. Uncertainty models have been widely used in the design of robust controllers and, recently, their use in model-based fault detection procedures is increasing. In this later case, consistency between new measurements and the uncertainty region is checked. When an inconsistency is found, the existence of a fault is decided. There exist two main approaches to the modeling of model uncertainty: the deterministic/worst case methods and the stochastic/probabilistic methods. At present, there are a number of different methods, e.g., model error modeling, set-membership identification and non-stationary stochastic embedding. In this dissertation we summarize the main procedures and illustrate their results by means of several examples of the literature. As contribution we propose a Bayesian methodology to solve the robust identification problem. The approach is highly unifying since many robust identification techniques can be interpreted as particular cases of the Bayesian framework. Also, the methodology can deal with non-linear structures such as the ones derived from the use of observers. The obtained Bayesian uncertainty models are used to detect faults in a quadruple-tank process and in a three-bladed wind turbine.</field>
</element>
</element>
</element>
<element name="format">
<element name="extent">
<element name="none">
<field name="value">216 p.</field>
</element>
</element>
<element name="mimetype">
<element name="none">
<field name="value">application/pdf</field>
</element>
</element>
</element>
<element name="language">
<element name="iso">
<element name="none">
<field name="value">eng</field>
</element>
</element>
</element>
<element name="publisher">
<element name="none">
<field name="value">Universitat Politècnica de Catalunya</field>
</element>
</element>
<element name="rights">
<element name="license">
<element name="none">
<field name="value">ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</field>
</element>
</element>
<element name="accessLevel">
<element name="none">
<field name="value">info:eu-repo/semantics/openAccess</field>
</element>
</element>
</element>
<element name="source">
<element name="none">
<field name="value">TDX (Tesis Doctorals en Xarxa)</field>
</element>
</element>
<element name="title">
<element name="none">
<field name="value">A Bayesian approach to robust identification: application to fault detection</field>
</element>
</element>
<element name="type">
<element name="none">
<field name="value">info:eu-repo/semantics/doctoralThesis</field>
<field name="value">info:eu-repo/semantics/publishedVersion</field>
</element>
</element>
<element name="subject">
<element name="udc">
<element name="cat">
<field name="value">621.3</field>
<field name="value">68</field>
</element>
</element>
</element>
<element name="embargo">
<element name="terms">
<element name="none">
<field name="value">cap</field>
</element>
</element>
</element>
</element>
<element name="bundles">
<element name="bundle">
<field name="name">ORIGINAL</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">TRFC1de1.pdf</field>
<field name="originalName">TRFC1de1.pdf</field>
<field name="format">application/pdf</field>
<field name="size">8997877</field>
<field name="url">https://www.tdx.cat/bitstream/10803/116329/2/TRFC1de1.pdf</field>
<field name="checksum">11febcd6b58b620a5ece1c7b6f24db07</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">2</field>
<field name="drm">open access</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">TEXT</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">TRFC1de1.pdf.txt</field>
<field name="originalName">TRFC1de1.pdf.txt</field>
<field name="description">Extracted Text</field>
<field name="format">text/plain</field>
<field name="size">378350</field>
<field name="url">https://www.tdx.cat/bitstream/10803/116329/3/TRFC1de1.pdf.txt</field>
<field name="checksum">6363ebb81b6f4217d859a82d6be5a221</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">3</field>
<field name="drm">open access</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">MEDIA_DOCUMENT</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">TRFC1de1.pdf.xml</field>
<field name="originalName">TRFC1de1.pdf.xml</field>
<field name="description">Document Consulta</field>
<field name="format">text/xml</field>
<field name="size">105</field>
<field name="url">https://www.tdx.cat/bitstream/10803/116329/4/TRFC1de1.pdf.xml</field>
<field name="checksum">bb2654b7600dbe1fe64ba79da6ee05e6</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">4</field>
<field name="drm">open access</field>
</element>
</element>
</element>
</element>
<element name="others">
<field name="handle">10803/116329</field>
<field name="identifier">oai:www.tdx.cat:10803/116329</field>
<field name="lastModifyDate">2023-06-09 12:03:16.497</field>
<field name="drm">open access</field>
</element>
<element name="repository">
<field name="name">TDX (Tesis Doctorals en Xarxa)</field>
<field name="mail">pir@csuc.cat</field>
</element>
</metadata>