<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>A combined fractional step domain decomposition method for the numerical integration of parabolic problems</dc:title>
<dc:creator>0000-0002-7521-2097</dc:creator>
<dc:creator>0000-0001-7867-8805</dc:creator>
<dc:creator>0000-0001-5906-6125</dc:creator>
<dc:contributor>Universidad Pública de Navarra. Departamento de Ingeniería Matemática e Informática</dc:contributor>
<dc:contributor>Nafarroako Unibertsitate Publikoa. Matematika eta Informatika Ingeniaritza Saila</dc:contributor>
<dc:subject>Parabolic problemas</dc:subject>
<dc:subject>Numerical integration</dc:subject>
<dc:description>In this paper we develop parallel numerical algorithms to solve linear time dependent coefficient parabolic problems. Such methods are obtained by means of two consecutive discretization procedures. Firstly, we realize a time integration of the original problem using a Fractional Step Runge Kutta method which provides a family of elliptic boundary value problems on certain subdomains of the original domain. Next, we discretize those elliptic problems by means of standard techniques. Using this framework, the numerical solution is obtained by solving, at each stage, a set of uncoupled linear systems of low dimension. Comparing these algorithms with the classical domain decomposition methods for parabolic problems, we obtain a reduction of computational cost because of, in this case, no Schwarz iterations are required. We give an unconditional convergence result for the totally discrete scheme and we include two numerical examples that show the behaviour of the proposed method.</dc:description>
<dc:description>This research is partially supported by the MCYT research project num. BFM2000-0803 and the research project resolution 134/2002 of Government of Navarra.</dc:description>
<dc:date>2004</dc:date>
<dc:type>info:eu-repo/semantics/conferenceObject</dc:type>
<dc:type>info:eu-repo/semantics/acceptedVersion</dc:type>
<dc:identifier>Portero, L., Bujanda, B., & Jorge, J. C. (2004). A combined fractional step domain decomposition method for the numerical integration of parabolic problems. En R. Wyrzykowski, J. Dongarra, M. Paprzycki, & J. Waśniewski (Eds.), Parallel Processing and Applied Mathematics (Vol. 3019, pp. 1034-1041). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-24669-5_134</dc:identifier>
<dc:identifier>978-3-540-21946-0</dc:identifier>
<dc:identifier>https://hdl.handle.net/2454/46253</dc:identifier>
<dc:identifier>10.1007/978-3-540-24669-5_134</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>Wyrzykowski, R.; Dongarra, J.; Paprzycki, M.; Wasniewski, J. (Eds.). Parallel processing and applied mathematics: 5th international conference, PPAM 2003: revised papers. Berlín: Springer; 2004. p.1034-1041 978-3-540-21946-0</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/Gobierno de Navarra//134%2F2002</dc:relation>
<dc:relation>https://doi.org/10.1007/978-3-540-24669-5_134</dc:relation>
<dc:rights>© Springer-Verlag Berlin Heidelberg 2004</dc:rights>
<dc:rights>Acceso abierto / Sarbide irekia</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:format>application/pdf</dc:format>
<dc:publisher>Springer</dc:publisher>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<d:DIDL schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didl.xsd">
<d:Item id="hdl_2454_46253">
<d:Descriptor>
<d:Statement mimeType="application/xml; charset=utf-8">
<dii:Identifier schemaLocation="urn:mpeg:mpeg21:2002:01-DII-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/dii/dii.xsd">urn:hdl:2454/46253</dii:Identifier>
</d:Statement>
</d:Descriptor>
<d:Descriptor>
<d:Statement mimeType="application/xml; charset=utf-8">
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>A combined fractional step domain decomposition method for the numerical integration of parabolic problems</dc:title>
<dc:contributor>Universidad Pública de Navarra. Departamento de Ingeniería Matemática e Informática</dc:contributor>
<dc:contributor>Nafarroako Unibertsitate Publikoa. Matematika eta Informatika Ingeniaritza Saila</dc:contributor>
<dc:subject>Parabolic problemas</dc:subject>
<dc:subject>Numerical integration</dc:subject>
<dc:description>In this paper we develop parallel numerical algorithms to solve linear time dependent coefficient parabolic problems. Such methods are obtained by means of two consecutive discretization procedures. Firstly, we realize a time integration of the original problem using a Fractional Step Runge Kutta method which provides a family of elliptic boundary value problems on certain subdomains of the original domain. Next, we discretize those elliptic problems by means of standard techniques. Using this framework, the numerical solution is obtained by solving, at each stage, a set of uncoupled linear systems of low dimension. Comparing these algorithms with the classical domain decomposition methods for parabolic problems, we obtain a reduction of computational cost because of, in this case, no Schwarz iterations are required. We give an unconditional convergence result for the totally discrete scheme and we include two numerical examples that show the behaviour of the proposed method.</dc:description>
<dc:date>2004</dc:date>
<dc:type>Contribución a congreso / Biltzarrerako ekarpena</dc:type>
<dc:type>info:eu-repo/semantics/conferenceObject</dc:type>
<dc:identifier>Portero, L., Bujanda, B., & Jorge, J. C. (2004). A combined fractional step domain decomposition method for the numerical integration of parabolic problems. En R. Wyrzykowski, J. Dongarra, M. Paprzycki, & J. Waśniewski (Eds.), Parallel Processing and Applied Mathematics (Vol. 3019, pp. 1034-1041). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-24669-5_134</dc:identifier>
<dc:identifier>978-3-540-21946-0</dc:identifier>
<dc:identifier>https://hdl.handle.net/2454/46253</dc:identifier>
<dc:identifier>10.1007/978-3-540-24669-5_134</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>Wyrzykowski, R.; Dongarra, J.; Paprzycki, M.; Wasniewski, J. (Eds.). Parallel processing and applied mathematics: 5th international conference, PPAM 2003: revised papers. Berlín: Springer; 2004. p.1034-1041 978-3-540-21946-0</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/Gobierno de Navarra//134%2F2002</dc:relation>
<dc:relation>https://doi.org/10.1007/978-3-540-24669-5_134</dc:relation>
<dc:rights>Acceso abierto / Sarbide irekia</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:rights>© Springer-Verlag Berlin Heidelberg 2004</dc:rights>
<dc:publisher>Springer</dc:publisher>
</oai_dc:dc>
</d:Statement>
</d:Descriptor>
<d:Component id="2454_46253_1">
</d:Component>
</d:Item>
</d:DIDL>
<?xml version="1.0" encoding="UTF-8" ?>
<dim:dim schemaLocation="http://www.dspace.org/xmlns/dspace/dim http://www.dspace.org/schema/dim.xsd">
<dim:field authority="2608--0000-0002-7521-2097" confidence="600" element="creator" lang="es_ES" mdschema="dc">Portero Egea, Laura</dim:field>
<dim:field authority="2608--0000-0002-7521-2097" confidence="600" element="creator" lang="es_ES" mdschema="dc">Bujanda Cirauqui, Blanca</dim:field>
<dim:field authority="2608--0000-0002-7521-2097" confidence="600" element="creator" lang="es_ES" mdschema="dc">Jorge Ulecia, Juan Carlos</dim:field>
<dim:field element="date" mdschema="dc" qualifier="issued">2004</dim:field>
<dim:field element="identifier" lang="en" mdschema="dc" qualifier="citation">Portero, L., Bujanda, B., & Jorge, J. C. (2004). A combined fractional step domain decomposition method for the numerical integration of parabolic problems. En R. Wyrzykowski, J. Dongarra, M. Paprzycki, & J. Waśniewski (Eds.), Parallel Processing and Applied Mathematics (Vol. 3019, pp. 1034-1041). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-24669-5_134</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="isbn">978-3-540-21946-0</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="uri">https://hdl.handle.net/2454/46253</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="doi">10.1007/978-3-540-24669-5_134</dim:field>
<dim:field element="description" lang="en" mdschema="dc" qualifier="abstract">In this paper we develop parallel numerical algorithms to solve linear time dependent coefficient parabolic problems. Such methods are obtained by means of two consecutive discretization procedures. Firstly, we realize a time integration of the original problem using a Fractional Step Runge Kutta method which provides a family of elliptic boundary value problems on certain subdomains of the original domain. Next, we discretize those elliptic problems by means of standard techniques. Using this framework, the numerical solution is obtained by solving, at each stage, a set of uncoupled linear systems of low dimension. Comparing these algorithms with the classical domain decomposition methods for parabolic problems, we obtain a reduction of computational cost because of, in this case, no Schwarz iterations are required. We give an unconditional convergence result for the totally discrete scheme and we include two numerical examples that show the behaviour of the proposed method.</dim:field>
<dim:field element="description" lang="en" mdschema="dc" qualifier="provenance">Submitted by Entrada dspace (entrada.dspace@unavarra.es) on 2023-09-08T07:46:16Z No. of bitstreams: 2 Portero_CombinedFractional.pdf: 308888 bytes, checksum: 0017f10f9cafecb16a7d8d2bde533f75 (MD5) dublinCore_20230908094614431.zip: 297255 bytes, checksum: 83c73105b872a92ea1ae327e370d7543 (MD5)</dim:field>
<dim:field element="description" lang="en" mdschema="dc" qualifier="provenance">Approved for entry into archive by Maria Mendia Ruiz Arzoz (mariamendia.ruiz@unavarra.es) on 2023-09-08T08:00:02Z (GMT) No. of bitstreams: 2 Portero_CombinedFractional.pdf: 308888 bytes, checksum: 0017f10f9cafecb16a7d8d2bde533f75 (MD5) dublinCore_20230908094614431.zip: 297255 bytes, checksum: 83c73105b872a92ea1ae327e370d7543 (MD5)</dim:field>
<dim:field element="description" lang="en" mdschema="dc" qualifier="provenance">Made available in DSpace on 2023-09-08T08:00:02Z (GMT). No. of bitstreams: 2 Portero_CombinedFractional.pdf: 308888 bytes, checksum: 0017f10f9cafecb16a7d8d2bde533f75 (MD5) dublinCore_20230908094614431.zip: 297255 bytes, checksum: 83c73105b872a92ea1ae327e370d7543 (MD5) Previous issue date: 2004</dim:field>
<dim:field element="description" lang="en" mdschema="dc" qualifier="sponsorship">This research is partially supported by the MCYT research project num. BFM2000-0803 and the research project resolution 134/2002 of Government of Navarra.</dim:field>
<dim:field element="format" lang="en" mdschema="dc" qualifier="mimetype">application/pdf</dim:field>
<dim:field element="language" lang="en" mdschema="dc" qualifier="iso">eng</dim:field>
<dim:field element="publisher" lang="en" mdschema="dc">Springer</dim:field>
<dim:field element="relation" lang="en" mdschema="dc" qualifier="ispartof">Wyrzykowski, R.; Dongarra, J.; Paprzycki, M.; Wasniewski, J. (Eds.). Parallel processing and applied mathematics: 5th international conference, PPAM 2003: revised papers. Berlín: Springer; 2004. p.1034-1041 978-3-540-21946-0</dim:field>
<dim:field element="relation" lang="en" mdschema="dc" qualifier="projectID">info:eu-repo/grantAgreement/Gobierno de Navarra//134%2F2002</dim:field>
<dim:field element="relation" mdschema="dc" qualifier="publisherversion">https://doi.org/10.1007/978-3-540-24669-5_134</dim:field>
<dim:field element="rights" lang="en" mdschema="dc">© Springer-Verlag Berlin Heidelberg 2004</dim:field>
<dim:field element="rights" lang="es" mdschema="dc" qualifier="accessRights">Acceso abierto / Sarbide irekia</dim:field>
<dim:field element="rights" lang="en" mdschema="dc" qualifier="accessRights">info:eu-repo/semantics/openAccess</dim:field>
<dim:field element="subject" lang="en" mdschema="dc">Parabolic problemas</dim:field>
<dim:field element="subject" lang="en" mdschema="dc">Numerical integration</dim:field>
<dim:field element="title" lang="en" mdschema="dc">A combined fractional step domain decomposition method for the numerical integration of parabolic problems</dim:field>
<dim:field element="type" lang="es" mdschema="dc">Contribución a congreso / Biltzarrerako ekarpena</dim:field>
<dim:field element="type" lang="en" mdschema="dc">info:eu-repo/semantics/conferenceObject</dim:field>
<dim:field element="type" lang="es" mdschema="dc" qualifier="version">Versión aceptada / Onetsi den bertsioa</dim:field>
<dim:field element="type" lang="en" mdschema="dc" qualifier="version">info:eu-repo/semantics/acceptedVersion</dim:field>
<dim:field element="contributor" lang="es_ES" mdschema="dc" qualifier="department">Universidad Pública de Navarra. Departamento de Ingeniería Matemática e Informática</dim:field>
<dim:field element="contributor" lang="eu" mdschema="dc" qualifier="department">Nafarroako Unibertsitate Publikoa. Matematika eta Informatika Ingeniaritza Saila</dim:field>
</dim:dim>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.w3.org/1999/02/22-rdf-syntax-ns# http://www.europeana.eu/schemas/edm">
<edm:ProvidedCHO about="https://hdl.handle.net/2454/46253">
<dc:title>A combined fractional step domain decomposition method for the numerical integration of parabolic problems</dc:title>
<dc:creator>Portero Egea, Laura</dc:creator>
<dc:creator>Bujanda Cirauqui, Blanca</dc:creator>
<dc:creator>Jorge Ulecia, Juan Carlos</dc:creator>
<dc:contributor>Universidad Pública de Navarra. Departamento de Ingeniería Matemática e Informática</dc:contributor>
<dc:contributor>Nafarroako Unibertsitate Publikoa. Matematika eta Informatika Ingeniaritza Saila</dc:contributor>
<dc:subject>Parabolic problemas</dc:subject>
<dc:subject>Numerical integration</dc:subject>
<dc:description>In this paper we develop parallel numerical algorithms to solve linear time dependent coefficient parabolic problems. Such methods are obtained by means of two consecutive discretization procedures. Firstly, we realize a time integration of the original problem using a Fractional Step Runge Kutta method which provides a family of elliptic boundary value problems on certain subdomains of the original domain. Next, we discretize those elliptic problems by means of standard techniques. Using this framework, the numerical solution is obtained by solving, at each stage, a set of uncoupled linear systems of low dimension. Comparing these algorithms with the classical domain decomposition methods for parabolic problems, we obtain a reduction of computational cost because of, in this case, no Schwarz iterations are required. We give an unconditional convergence result for the totally discrete scheme and we include two numerical examples that show the behaviour of the proposed method.</dc:description>
<dc:date>2004</dc:date>
<dc:type>Contribución a congreso / Biltzarrerako ekarpena</dc:type>
<dc:type>info:eu-repo/semantics/conferenceObject</dc:type>
<dc:identifier>Portero, L., Bujanda, B., & Jorge, J. C. (2004). A combined fractional step domain decomposition method for the numerical integration of parabolic problems. En R. Wyrzykowski, J. Dongarra, M. Paprzycki, & J. Waśniewski (Eds.), Parallel Processing and Applied Mathematics (Vol. 3019, pp. 1034-1041). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-24669-5_134</dc:identifier>
<dc:identifier>978-3-540-21946-0</dc:identifier>
<dc:identifier>https://hdl.handle.net/2454/46253</dc:identifier>
<dc:identifier>10.1007/978-3-540-24669-5_134</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>Wyrzykowski, R.; Dongarra, J.; Paprzycki, M.; Wasniewski, J. (Eds.). Parallel processing and applied mathematics: 5th international conference, PPAM 2003: revised papers. Berlín: Springer; 2004. p.1034-1041 978-3-540-21946-0</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/Gobierno de Navarra//134%2F2002</dc:relation>
<dc:relation>https://doi.org/10.1007/978-3-540-24669-5_134</dc:relation>
<dc:publisher>Springer</dc:publisher>
<edm:type>TEXT</edm:type>
</edm:ProvidedCHO>
<ore:Aggregation about="https://hdl.handle.net/2454/46253">
<edm:dataProvider>Academica-e. Repositorio institucional de la Universidad Pública de Navarra</edm:dataProvider>
<edm:provider>Hispana</edm:provider>
</ore:Aggregation>
<edm:WebResource about="https://academica-e.unavarra.es/xmlui/bitstream/2454/46253/1/Portero_CombinedFractional.pdf">
</edm:WebResource>
</rdf:RDF>
<?xml version="1.0" encoding="UTF-8" ?>
<thesis schemaLocation="http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd">
<title>A combined fractional step domain decomposition method for the numerical integration of parabolic problems</title>
<contributor>Universidad Pública de Navarra. Departamento de Ingeniería Matemática e Informática</contributor>
<contributor>Nafarroako Unibertsitate Publikoa. Matematika eta Informatika Ingeniaritza Saila</contributor>
<subject>Parabolic problemas</subject>
<subject>Numerical integration</subject>
<description>In this paper we develop parallel numerical algorithms to solve linear time dependent coefficient parabolic problems. Such methods are obtained by means of two consecutive discretization procedures. Firstly, we realize a time integration of the original problem using a Fractional Step Runge Kutta method which provides a family of elliptic boundary value problems on certain subdomains of the original domain. Next, we discretize those elliptic problems by means of standard techniques. Using this framework, the numerical solution is obtained by solving, at each stage, a set of uncoupled linear systems of low dimension. Comparing these algorithms with the classical domain decomposition methods for parabolic problems, we obtain a reduction of computational cost because of, in this case, no Schwarz iterations are required. We give an unconditional convergence result for the totally discrete scheme and we include two numerical examples that show the behaviour of the proposed method.</description>
<date>2004</date>
<type>Contribución a congreso / Biltzarrerako ekarpena</type>
<type>info:eu-repo/semantics/conferenceObject</type>
<identifier>Portero, L., Bujanda, B., & Jorge, J. C. (2004). A combined fractional step domain decomposition method for the numerical integration of parabolic problems. En R. Wyrzykowski, J. Dongarra, M. Paprzycki, & J. Waśniewski (Eds.), Parallel Processing and Applied Mathematics (Vol. 3019, pp. 1034-1041). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-24669-5_134</identifier>
<identifier>978-3-540-21946-0</identifier>
<identifier>https://hdl.handle.net/2454/46253</identifier>
<identifier>10.1007/978-3-540-24669-5_134</identifier>
<language>eng</language>
<relation>Wyrzykowski, R.; Dongarra, J.; Paprzycki, M.; Wasniewski, J. (Eds.). Parallel processing and applied mathematics: 5th international conference, PPAM 2003: revised papers. Berlín: Springer; 2004. p.1034-1041 978-3-540-21946-0</relation>
<relation>info:eu-repo/grantAgreement/Gobierno de Navarra//134%2F2002</relation>
<relation>https://doi.org/10.1007/978-3-540-24669-5_134</relation>
<rights>Acceso abierto / Sarbide irekia</rights>
<rights>info:eu-repo/semantics/openAccess</rights>
<rights>© Springer-Verlag Berlin Heidelberg 2004</rights>
<publisher>Springer</publisher>
</thesis>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>00925njm 22002777a 4500</leader>
<datafield ind1=" " ind2=" " tag="042">
<subfield code="a">dc</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Portero Egea, Laura</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Bujanda Cirauqui, Blanca</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Jorge Ulecia, Juan Carlos</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="260">
<subfield code="c">2004</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">In this paper we develop parallel numerical algorithms to solve linear time dependent coefficient parabolic problems. Such methods are obtained by means of two consecutive discretization procedures. Firstly, we realize a time integration of the original problem using a Fractional Step Runge Kutta method which provides a family of elliptic boundary value problems on certain subdomains of the original domain. Next, we discretize those elliptic problems by means of standard techniques. Using this framework, the numerical solution is obtained by solving, at each stage, a set of uncoupled linear systems of low dimension. Comparing these algorithms with the classical domain decomposition methods for parabolic problems, we obtain a reduction of computational cost because of, in this case, no Schwarz iterations are required. We give an unconditional convergence result for the totally discrete scheme and we include two numerical examples that show the behaviour of the proposed method.</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">Portero, L., Bujanda, B., & Jorge, J. C. (2004). A combined fractional step domain decomposition method for the numerical integration of parabolic problems. En R. Wyrzykowski, J. Dongarra, M. Paprzycki, & J. Waśniewski (Eds.), Parallel Processing and Applied Mathematics (Vol. 3019, pp. 1034-1041). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-24669-5_134</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">978-3-540-21946-0</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">https://hdl.handle.net/2454/46253</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">10.1007/978-3-540-24669-5_134</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Parabolic problemas</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Numerical integration</subfield>
</datafield>
<datafield ind1="0" ind2="0" tag="245">
<subfield code="a">A combined fractional step domain decomposition method for the numerical integration of parabolic problems</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<mets ID=" DSpace_ITEM_2454-46253" OBJID=" hdl:2454/46253" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">
<metsHdr CREATEDATE="2024-04-30T20:34:58Z">
<agent ROLE="CUSTODIAN" TYPE="ORGANIZATION">
<name>Academica-e</name>
</agent>
</metsHdr>
<dmdSec ID="DMD_2454_46253">
<mdWrap MDTYPE="MODS">
<xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:role>
<mods:roleTerm type="text">department</mods:roleTerm>
</mods:role>
<mods:namePart>Universidad Pública de Navarra. Departamento de Ingeniería Matemática e Informática</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">department</mods:roleTerm>
</mods:role>
<mods:namePart>Nafarroako Unibertsitate Publikoa. Matematika eta Informatika Ingeniaritza Saila</mods:namePart>
</mods:name>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2004</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="citation">Portero, L., Bujanda, B., & Jorge, J. C. (2004). A combined fractional step domain decomposition method for the numerical integration of parabolic problems. En R. Wyrzykowski, J. Dongarra, M. Paprzycki, & J. Waśniewski (Eds.), Parallel Processing and Applied Mathematics (Vol. 3019, pp. 1034-1041). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-24669-5_134</mods:identifier>
<mods:identifier type="isbn">978-3-540-21946-0</mods:identifier>
<mods:identifier type="uri">https://hdl.handle.net/2454/46253</mods:identifier>
<mods:identifier type="doi">10.1007/978-3-540-24669-5_134</mods:identifier>
<mods:abstract>In this paper we develop parallel numerical algorithms to solve linear time dependent coefficient parabolic problems. Such methods are obtained by means of two consecutive discretization procedures. Firstly, we realize a time integration of the original problem using a Fractional Step Runge Kutta method which provides a family of elliptic boundary value problems on certain subdomains of the original domain. Next, we discretize those elliptic problems by means of standard techniques. Using this framework, the numerical solution is obtained by solving, at each stage, a set of uncoupled linear systems of low dimension. Comparing these algorithms with the classical domain decomposition methods for parabolic problems, we obtain a reduction of computational cost because of, in this case, no Schwarz iterations are required. We give an unconditional convergence result for the totally discrete scheme and we include two numerical examples that show the behaviour of the proposed method.</mods:abstract>
<mods:language>
<mods:languageTerm authority="rfc3066">eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">© Springer-Verlag Berlin Heidelberg 2004</mods:accessCondition>
<mods:subject>
<mods:topic>Parabolic problemas</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Numerical integration</mods:topic>
</mods:subject>
<mods:titleInfo>
<mods:title>A combined fractional step domain decomposition method for the numerical integration of parabolic problems</mods:title>
</mods:titleInfo>
<mods:genre>Contribución a congreso / Biltzarrerako ekarpena</mods:genre>
</mods:mods>
</xmlData>
</mdWrap>
</dmdSec>
<amdSec ID="TMD_2454_46253">
<rightsMD ID="RIG_2454_46253">
<mdWrap MDTYPE="OTHER" MIMETYPE="text/plain" OTHERMDTYPE="DSpaceDepositLicense">
<binData>TElDRU5DSUEgREUgRElTVFJJQlVDScOTTiBOTyBFWENMVVNJVkEKCkFsIGZpcm1hciB5IHJlbWl0aXIgZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBjb25jZWRlIGEgbGEgVW5pdmVyc2lkYWQgUMO6YmxpY2EgZGUgTmF2YXJyYSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBhIHJldXRpbGl6YXIsIHRyYXNmb3JtYXIgKGVuIGxvcyB0w6lybWlub3MgZGVmaW5pZG9zIG3DoXMgYWRlbGFudGUpIHkvbyBhIGRpc3RyaWJ1aXIgZWwgZG9jdW1lbnRvIHF1ZSBsYSBhY29tcGHDsWEgKGluY2x1eWVuZG8gZWwgcmVzdW1lbikgZW4gZm9ybWF0byBpbXByZXNvIG8gZWxlY3Ryw7NuaWNvIHkgZW4gY3VhbHF1aWVyIG90cm8sIGNvbW8gcG9yIGVqZW1wbG8sIGF1ZGlvIG8gdsOtZGVvLgoKQWNlcHRhIHF1ZSBsYSBVbml2ZXJzaWRhZCBQw7pibGljYSBkZSBOYXZhcnJhIHB1ZWRhLCBzaW4gbW9kaWZpY2FyIGVsIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvLCB0cmFuc2Zvcm1hcmxvIGEgY3VhbHF1aWVyIHNvcG9ydGUgbyBmb3JtYXRvIGNvbiBmaW5lcyBkZSBwcmVzZXJ2YWNpw7NuLgoKVGFtYmnDqW4gYWNlcHRhIHF1ZSBsYSBVbml2ZXJzaWRhZCBQw7pibGljYSBkZSBOYXZhcnJhIHB1ZWRhIGd1YXJkYXIgbcOhcyBkZSB1bmEgY29waWEgZGUgw6lsIGNvbiBmaW5lcyBkZSBzZWd1cmlkYWQgeSBwcmVzZXJ2YWNpw7NuLiAKCk1hbmlmaWVzdGEgcXVlIGVzdGUgZG9jdW1lbnRvIGVzIG9icmEgb3JpZ2luYWwgc3V5YSB5IHF1ZSB0aWVuZSBkZXJlY2hvIGEgY2VkZXIgbG9zIGRlcmVjaG9zIHF1ZSBzZSBleHByZXNhbiBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBtYW5pZmllc3RhIHF1ZSwgaGFzdGEgZG9uZGUgc2FiZSwgbm8gaW5mcmluZ2UgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG90cm9zLiAKClNpIGVzdGUgZG9jdW1lbnRvIGNvbnRpZW5lIG1hdGVyaWFsIHNvYnJlIGVsIHF1ZSB1c3RlZCBubyB0aWVuZSBkZXJlY2hvcyBkZSBhdXRvciwgbWFuaWZpZXN0YSBxdWUgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBzaW4gcmVzdHJpY2Npb25lcyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgY2VkZXIgYSBsYSBVbml2ZXJzaWRhZCBQw7pibGljYSBkZSBOYXZhcnJhIGxvcyBkZXJlY2hvcyBleGlnaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSB5IHF1ZSBlbCBtYXRlcmlhbCBwZXJ0ZW5lY2llbnRlIGEgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGRlbnRybyBkZWwgdGV4dG8gbyBlbCBjb250ZW5pZG8gZGUgZXN0ZSBkb2N1bWVudG8uIAoKU2kgZXN0ZSBkb2N1bWVudG8gZXN0w6EgYmFzYWRvIGVuIHVuYSBvYnJhIHF1ZSBoYSBzaWRvIHBhdHJvY2luYWRhIG8gcHJvbW92aWRhIHBvciB1biBvcmdhbmlzbW8gZGlzdGludG8gZGUgbGEgVW5pdmVyc2lkYWQgUMO6YmxpY2EgZGUgTmF2YXJyYSwgdXN0ZWQgYWNlcHRhIHF1ZSBoYSBzYXRpc2ZlY2hvIGN1YWxxdWllciBkZXJlY2hvIGRlIHJldmlzacOzbiB5IGRlbcOhcyBvYmxpZ2FjaW9uZXMgZXhpZ2lkYXMgcG9yIGRpY2hvIGNvbnRyYXRvIG8gYWN1ZXJkby4KCkxhIFVuaXZlcnNpZGFkIFDDumJsaWNhIGRlIE5hdmFycmEgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIHN1KHMpIG5vbWJyZShzKSBjb21vIGF1dG9yKGVzKSBvIHByb3BpZXRhcmlvKHMpIGRlIGVzdGUgZG9jdW1lbnRvIHkgbm8gaGFyw6EgY2FtYmlvcyBxdWUgbm8gc2VhbiBsb3MgcGVybWl0aWRvcyBwb3IgZXN0YSBsaWNlbmNpYS4KCg==</binData>
</mdWrap>
</rightsMD>
</amdSec>
<amdSec ID="FO_2454_46253_1">
<techMD ID="TECH_O_2454_46253_1">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>https://academica-e.unavarra.es/xmlui/bitstream/2454/46253/1/Portero_CombinedFractional.pdf</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>0017f10f9cafecb16a7d8d2bde533f75</premis:messageDigest>
</premis:fixity>
<premis:size>308888</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>application/pdf</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>Portero_CombinedFractional.pdf</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<amdSec ID="FT_2454_46253_4">
<techMD ID="TECH_T_2454_46253_4">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>https://academica-e.unavarra.es/xmlui/bitstream/2454/46253/4/Portero_CombinedFractional.pdf.txt</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>1cbae56e4a269722918646d7d083821c</premis:messageDigest>
</premis:fixity>
<premis:size>20902</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>text/plain</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>Portero_CombinedFractional.pdf.txt</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<fileSec>
<fileGrp USE="ORIGINAL">
<file ADMID="FO_2454_46253_1" CHECKSUM="0017f10f9cafecb16a7d8d2bde533f75" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_2454_46253_1" ID="BITSTREAM_ORIGINAL_2454_46253_1" MIMETYPE="application/pdf" SEQ="1" SIZE="308888">
</file>
</fileGrp>
<fileGrp USE="TEXT">
<file ADMID="FT_2454_46253_4" CHECKSUM="1cbae56e4a269722918646d7d083821c" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_2454_46253_4" ID="BITSTREAM_TEXT_2454_46253_4" MIMETYPE="text/plain" SEQ="4" SIZE="20902">
</file>
</fileGrp>
</fileSec>
<structMap LABEL="DSpace Object" TYPE="LOGICAL">
<div ADMID="DMD_2454_46253" TYPE="DSpace Object Contents">
<div TYPE="DSpace BITSTREAM">
</div>
</div>
</structMap>
</mets>
<?xml version="1.0" encoding="UTF-8" ?>
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2004</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="citation">Portero, L., Bujanda, B., & Jorge, J. C. (2004). A combined fractional step domain decomposition method for the numerical integration of parabolic problems. En R. Wyrzykowski, J. Dongarra, M. Paprzycki, & J. Waśniewski (Eds.), Parallel Processing and Applied Mathematics (Vol. 3019, pp. 1034-1041). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-24669-5_134</mods:identifier>
<mods:identifier type="isbn">978-3-540-21946-0</mods:identifier>
<mods:identifier type="uri">https://hdl.handle.net/2454/46253</mods:identifier>
<mods:identifier type="doi">10.1007/978-3-540-24669-5_134</mods:identifier>
<mods:abstract>In this paper we develop parallel numerical algorithms to solve linear time dependent coefficient parabolic problems. Such methods are obtained by means of two consecutive discretization procedures. Firstly, we realize a time integration of the original problem using a Fractional Step Runge Kutta method which provides a family of elliptic boundary value problems on certain subdomains of the original domain. Next, we discretize those elliptic problems by means of standard techniques. Using this framework, the numerical solution is obtained by solving, at each stage, a set of uncoupled linear systems of low dimension. Comparing these algorithms with the classical domain decomposition methods for parabolic problems, we obtain a reduction of computational cost because of, in this case, no Schwarz iterations are required. We give an unconditional convergence result for the totally discrete scheme and we include two numerical examples that show the behaviour of the proposed method.</mods:abstract>
<mods:language>
<mods:languageTerm>eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">Acceso abierto / Sarbide irekia</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">info:eu-repo/semantics/openAccess</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">© Springer-Verlag Berlin Heidelberg 2004</mods:accessCondition>
<mods:subject>
<mods:topic>Parabolic problemas</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Numerical integration</mods:topic>
</mods:subject>
<mods:titleInfo>
<mods:title>A combined fractional step domain decomposition method for the numerical integration of parabolic problems</mods:title>
</mods:titleInfo>
<mods:genre>Contribución a congreso / Biltzarrerako ekarpena</mods:genre>
<mods:genre>info:eu-repo/semantics/conferenceObject</mods:genre>
</mods:mods>
<?xml version="1.0" encoding="UTF-8" ?>
<oaire:record schemaLocation="http://namespace.openaire.eu/schema/oaire/">
<datacite:titles>
<datacite:title>A combined fractional step domain decomposition method for the numerical integration of parabolic problems</datacite:title>
</datacite:titles>
<datacite:creators>
<datacite:creator>
<datacite:creatorName>Portero Egea, Laura</datacite:creatorName>
<datacite:affiliation>Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa</datacite:affiliation>
<datacite:nameIdentifier nameIdentifierScheme="ORCID" schemeURI="https://orcid.org">0000-0002-7521-2097</datacite:nameIdentifier>
</datacite:creator>
<datacite:creator>
<datacite:creatorName>Bujanda Cirauqui, Blanca</datacite:creatorName>
<datacite:affiliation>Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa</datacite:affiliation>
<datacite:nameIdentifier nameIdentifierScheme="ORCID" schemeURI="https://orcid.org">0000-0001-7867-8805</datacite:nameIdentifier>
</datacite:creator>
<datacite:creator>
<datacite:creatorName>Jorge Ulecia, Juan Carlos</datacite:creatorName>
<datacite:affiliation>Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa</datacite:affiliation>
<datacite:nameIdentifier nameIdentifierScheme="ORCID" schemeURI="https://orcid.org">0000-0001-5906-6125</datacite:nameIdentifier>
</datacite:creator>
</datacite:creators>
<datacite:contributors>
<datacite:contributor contributorType="ResearchGroup">
<datacite:contributorName nameType="Organizational">Universidad Pública de Navarra. Departamento de Ingeniería Matemática e Informática</datacite:contributorName>
</datacite:contributor>
<datacite:contributor contributorType="ResearchGroup">
<datacite:contributorName nameType="Organizational">Nafarroako Unibertsitate Publikoa. Matematika eta Informatika Ingeniaritza Saila</datacite:contributorName>
</datacite:contributor>
</datacite:contributors>
<oaire:fundingReferences>
<oaire:fundingReference>
<oaire:funderName>Gobierno de Navarra</oaire:funderName>
<oaire:awardNumber>134%2F2002</oaire:awardNumber>
</oaire:fundingReference>
</oaire:fundingReferences>
<datacite:subject>Parabolic problemas</datacite:subject>
<datacite:subject>Numerical integration</datacite:subject>
<dc:description>In this paper we develop parallel numerical algorithms to solve linear time dependent coefficient parabolic problems. Such methods are obtained by means of two consecutive discretization procedures. Firstly, we realize a time integration of the original problem using a Fractional Step Runge Kutta method which provides a family of elliptic boundary value problems on certain subdomains of the original domain. Next, we discretize those elliptic problems by means of standard techniques. Using this framework, the numerical solution is obtained by solving, at each stage, a set of uncoupled linear systems of low dimension. Comparing these algorithms with the classical domain decomposition methods for parabolic problems, we obtain a reduction of computational cost because of, in this case, no Schwarz iterations are required. We give an unconditional convergence result for the totally discrete scheme and we include two numerical examples that show the behaviour of the proposed method.</dc:description>
<dc:description>This research is partially supported by the MCYT research project num. BFM2000-0803 and the research project resolution 134/2002 of Government of Navarra.</dc:description>
<datacite:date dateType="Issued">2004</datacite:date>
<oaire:resourceType resourceTypeGeneral="literature" uri="http://purl.org/coar/resource_type/c_c94f">conferenceObject</oaire:resourceType>
<oaire:version uri="http://purl.org/coar/version/c_ab4af688f83e57aa">AM</oaire:version>
<datacite:identifier>https://hdl.handle.net/2454/46253</datacite:identifier>
<datacite:alternateIdentifiers>
<datacite:alternateIdentifier alternateIdentifierType="ISBN">978-3-540-21946-0</datacite:alternateIdentifier>
<datacite:alternateIdentifier alternateIdentifierType="DOI">10.1007/978-3-540-24669-5_134</datacite:alternateIdentifier>
</datacite:alternateIdentifiers>
<dc:language>eng</dc:language>
<dc:rights>© Springer-Verlag Berlin Heidelberg 2004</dc:rights>
<datacite:rights rightsURI="http://purl.org/coar/access_right/c_abf2">open access</datacite:rights>
<dc:format>application/pdf</dc:format>
<dc:publisher>Springer</dc:publisher>
<oaire:file>https://academica-e.unavarra.es/xmlui/bitstream/2454/46253/1/Portero_CombinedFractional.pdf</oaire:file>
</oaire:record>
<?xml version="1.0" encoding="UTF-8" ?>
<atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">
<atom:id>https://hdl.handle.net/2454/46253/ore.xml</atom:id>
<atom:source>
<atom:generator>Academica-e</atom:generator>
</atom:source>
<atom:title>A combined fractional step domain decomposition method for the numerical integration of parabolic problems</atom:title>
<oreatom:triples>
<rdf:Description about="https://hdl.handle.net/2454/46253/ore.xml#atom">
</rdf:Description>
<rdf:Description about="https://academica-e.unavarra.es/xmlui/bitstream/2454/46253/4/Portero_CombinedFractional.pdf.txt">
<dcterms:description>TEXT</dcterms:description>
</rdf:Description>
<rdf:Description about="https://academica-e.unavarra.es/xmlui/bitstream/2454/46253/5/Portero_CombinedFractional.pdf.jpg">
<dcterms:description>THUMBNAIL</dcterms:description>
</rdf:Description>
<rdf:Description about="https://academica-e.unavarra.es/xmlui/bitstream/2454/46253/1/Portero_CombinedFractional.pdf">
<dcterms:description>ORIGINAL</dcterms:description>
</rdf:Description>
<rdf:Description about="https://academica-e.unavarra.es/xmlui/bitstream/2454/46253/2/license.txt">
<dcterms:description>LICENSE</dcterms:description>
</rdf:Description>
<rdf:Description about="https://academica-e.unavarra.es/xmlui/bitstream/2454/46253/3/dublinCore_20230908094614431.zip">
<dcterms:description>SWORD</dcterms:description>
</rdf:Description>
</oreatom:triples>
</atom:entry>
<?xml version="1.0" encoding="UTF-8" ?>
<qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">
<dc:title>A combined fractional step domain decomposition method for the numerical integration of parabolic problems</dc:title>
<dc:creator>Portero Egea, Laura</dc:creator>
<dc:creator>Bujanda Cirauqui, Blanca</dc:creator>
<dc:creator>Jorge Ulecia, Juan Carlos</dc:creator>
<dc:contributor>Universidad Pública de Navarra. Departamento de Ingeniería Matemática e Informática</dc:contributor>
<dc:contributor>Nafarroako Unibertsitate Publikoa. Matematika eta Informatika Ingeniaritza Saila</dc:contributor>
<dc:subject>Parabolic problemas</dc:subject>
<dc:subject>Numerical integration</dc:subject>
<dcterms:abstract>In this paper we develop parallel numerical algorithms to solve linear time dependent coefficient parabolic problems. Such methods are obtained by means of two consecutive discretization procedures. Firstly, we realize a time integration of the original problem using a Fractional Step Runge Kutta method which provides a family of elliptic boundary value problems on certain subdomains of the original domain. Next, we discretize those elliptic problems by means of standard techniques. Using this framework, the numerical solution is obtained by solving, at each stage, a set of uncoupled linear systems of low dimension. Comparing these algorithms with the classical domain decomposition methods for parabolic problems, we obtain a reduction of computational cost because of, in this case, no Schwarz iterations are required. We give an unconditional convergence result for the totally discrete scheme and we include two numerical examples that show the behaviour of the proposed method.</dcterms:abstract>
<dcterms:issued>2004</dcterms:issued>
<dc:type>Contribución a congreso / Biltzarrerako ekarpena</dc:type>
<dc:type>info:eu-repo/semantics/conferenceObject</dc:type>
<dc:identifier>Portero, L., Bujanda, B., & Jorge, J. C. (2004). A combined fractional step domain decomposition method for the numerical integration of parabolic problems. En R. Wyrzykowski, J. Dongarra, M. Paprzycki, & J. Waśniewski (Eds.), Parallel Processing and Applied Mathematics (Vol. 3019, pp. 1034-1041). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-24669-5_134</dc:identifier>
<dc:identifier>978-3-540-21946-0</dc:identifier>
<dc:identifier>https://hdl.handle.net/2454/46253</dc:identifier>
<dc:identifier>10.1007/978-3-540-24669-5_134</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>Wyrzykowski, R.; Dongarra, J.; Paprzycki, M.; Wasniewski, J. (Eds.). Parallel processing and applied mathematics: 5th international conference, PPAM 2003: revised papers. Berlín: Springer; 2004. p.1034-1041 978-3-540-21946-0</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/Gobierno de Navarra//134%2F2002</dc:relation>
<dc:relation>https://doi.org/10.1007/978-3-540-24669-5_134</dc:relation>
<dc:rights>Acceso abierto / Sarbide irekia</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:rights>© Springer-Verlag Berlin Heidelberg 2004</dc:rights>
<dc:publisher>Springer</dc:publisher>
</qdc:qualifieddc>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">
<ow:Publication about="oai:academica-e.unavarra.es:2454/46253">
<dc:title>A combined fractional step domain decomposition method for the numerical integration of parabolic problems</dc:title>
<dc:contributor>Universidad Pública de Navarra. Departamento de Ingeniería Matemática e Informática</dc:contributor>
<dc:contributor>Nafarroako Unibertsitate Publikoa. Matematika eta Informatika Ingeniaritza Saila</dc:contributor>
<dc:subject>Parabolic problemas</dc:subject>
<dc:subject>Numerical integration</dc:subject>
<dc:description>In this paper we develop parallel numerical algorithms to solve linear time dependent coefficient parabolic problems. Such methods are obtained by means of two consecutive discretization procedures. Firstly, we realize a time integration of the original problem using a Fractional Step Runge Kutta method which provides a family of elliptic boundary value problems on certain subdomains of the original domain. Next, we discretize those elliptic problems by means of standard techniques. Using this framework, the numerical solution is obtained by solving, at each stage, a set of uncoupled linear systems of low dimension. Comparing these algorithms with the classical domain decomposition methods for parabolic problems, we obtain a reduction of computational cost because of, in this case, no Schwarz iterations are required. We give an unconditional convergence result for the totally discrete scheme and we include two numerical examples that show the behaviour of the proposed method.</dc:description>
<dc:date>2004</dc:date>
<dc:type>Contribución a congreso / Biltzarrerako ekarpena</dc:type>
<dc:type>info:eu-repo/semantics/conferenceObject</dc:type>
<dc:identifier>Portero, L., Bujanda, B., & Jorge, J. C. (2004). A combined fractional step domain decomposition method for the numerical integration of parabolic problems. En R. Wyrzykowski, J. Dongarra, M. Paprzycki, & J. Waśniewski (Eds.), Parallel Processing and Applied Mathematics (Vol. 3019, pp. 1034-1041). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-24669-5_134</dc:identifier>
<dc:identifier>978-3-540-21946-0</dc:identifier>
<dc:identifier>https://hdl.handle.net/2454/46253</dc:identifier>
<dc:identifier>10.1007/978-3-540-24669-5_134</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>Wyrzykowski, R.; Dongarra, J.; Paprzycki, M.; Wasniewski, J. (Eds.). Parallel processing and applied mathematics: 5th international conference, PPAM 2003: revised papers. Berlín: Springer; 2004. p.1034-1041 978-3-540-21946-0</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/Gobierno de Navarra//134%2F2002</dc:relation>
<dc:relation>https://doi.org/10.1007/978-3-540-24669-5_134</dc:relation>
<dc:rights>Acceso abierto / Sarbide irekia</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:rights>© Springer-Verlag Berlin Heidelberg 2004</dc:rights>
<dc:publisher>Springer</dc:publisher>
</ow:Publication>
</rdf:RDF>
<?xml version="1.0" encoding="UTF-8" ?>
<metadata schemaLocation="http://www.lyncode.com/xoai http://www.lyncode.com/xsd/xoai.xsd">
<element name="dc">
<element name="creator">
<element name="es_ES">
<field name="value">Portero Egea, Laura</field>
<field name="authority">2608--0000-0002-7521-2097</field>
<field name="confidence">600</field>
<field name="value">Bujanda Cirauqui, Blanca</field>
<field name="authority">2455--0000-0001-7867-8805</field>
<field name="confidence">600</field>
<field name="value">Jorge Ulecia, Juan Carlos</field>
<field name="authority">476--0000-0001-5906-6125</field>
<field name="confidence">600</field>
</element>
</element>
<element name="date">
<element name="issued">
<element name="none">
<field name="value">2004</field>
</element>
</element>
</element>
<element name="identifier">
<element name="citation">
<element name="en">
<field name="value">Portero, L., Bujanda, B., & Jorge, J. C. (2004). A combined fractional step domain decomposition method for the numerical integration of parabolic problems. En R. Wyrzykowski, J. Dongarra, M. Paprzycki, & J. Waśniewski (Eds.), Parallel Processing and Applied Mathematics (Vol. 3019, pp. 1034-1041). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-24669-5_134</field>
</element>
</element>
<element name="isbn">
<element name="none">
<field name="value">978-3-540-21946-0</field>
</element>
</element>
<element name="uri">
<element name="none">
<field name="value">https://hdl.handle.net/2454/46253</field>
</element>
</element>
<element name="doi">
<element name="none">
<field name="value">10.1007/978-3-540-24669-5_134</field>
</element>
</element>
</element>
<element name="description">
<element name="abstract">
<element name="en">
<field name="value">In this paper we develop parallel numerical algorithms to solve linear time dependent coefficient parabolic problems. Such methods are obtained by means of two consecutive discretization procedures. Firstly, we realize a time integration of the original problem using a Fractional Step Runge Kutta method which provides a family of elliptic boundary value problems on certain subdomains of the original domain. Next, we discretize those elliptic problems by means of standard techniques. Using this framework, the numerical solution is obtained by solving, at each stage, a set of uncoupled linear systems of low dimension. Comparing these algorithms with the classical domain decomposition methods for parabolic problems, we obtain a reduction of computational cost because of, in this case, no Schwarz iterations are required. We give an unconditional convergence result for the totally discrete scheme and we include two numerical examples that show the behaviour of the proposed method.</field>
</element>
</element>
<element name="provenance">
<element name="en">
<field name="value">Submitted by Entrada dspace (entrada.dspace@unavarra.es) on 2023-09-08T07:46:16Z No. of bitstreams: 2 Portero_CombinedFractional.pdf: 308888 bytes, checksum: 0017f10f9cafecb16a7d8d2bde533f75 (MD5) dublinCore_20230908094614431.zip: 297255 bytes, checksum: 83c73105b872a92ea1ae327e370d7543 (MD5)</field>
<field name="value">Approved for entry into archive by Maria Mendia Ruiz Arzoz (mariamendia.ruiz@unavarra.es) on 2023-09-08T08:00:02Z (GMT) No. of bitstreams: 2 Portero_CombinedFractional.pdf: 308888 bytes, checksum: 0017f10f9cafecb16a7d8d2bde533f75 (MD5) dublinCore_20230908094614431.zip: 297255 bytes, checksum: 83c73105b872a92ea1ae327e370d7543 (MD5)</field>
<field name="value">Made available in DSpace on 2023-09-08T08:00:02Z (GMT). No. of bitstreams: 2 Portero_CombinedFractional.pdf: 308888 bytes, checksum: 0017f10f9cafecb16a7d8d2bde533f75 (MD5) dublinCore_20230908094614431.zip: 297255 bytes, checksum: 83c73105b872a92ea1ae327e370d7543 (MD5) Previous issue date: 2004</field>
</element>
</element>
<element name="sponsorship">
<element name="en">
<field name="value">This research is partially supported by the MCYT research project num. BFM2000-0803 and the research project resolution 134/2002 of Government of Navarra.</field>
</element>
</element>
</element>
<element name="format">
<element name="mimetype">
<element name="en">
<field name="value">application/pdf</field>
</element>
</element>
</element>
<element name="language">
<element name="iso">
<element name="en">
<field name="value">eng</field>
</element>
</element>
</element>
<element name="publisher">
<element name="en">
<field name="value">Springer</field>
</element>
</element>
<element name="relation">
<element name="ispartof">
<element name="en">
<field name="value">Wyrzykowski, R.; Dongarra, J.; Paprzycki, M.; Wasniewski, J. (Eds.). Parallel processing and applied mathematics: 5th international conference, PPAM 2003: revised papers. Berlín: Springer; 2004. p.1034-1041 978-3-540-21946-0</field>
</element>
</element>
<element name="projectID">
<element name="en">
<field name="value">info:eu-repo/grantAgreement/Gobierno de Navarra//134%2F2002</field>
</element>
</element>
<element name="publisherversion">
<element name="none">
<field name="value">https://doi.org/10.1007/978-3-540-24669-5_134</field>
</element>
</element>
</element>
<element name="rights">
<element name="en">
<field name="value">© Springer-Verlag Berlin Heidelberg 2004</field>
</element>
<element name="accessRights">
<element name="es">
<field name="value">Acceso abierto / Sarbide irekia</field>
</element>
<element name="en">
<field name="value">info:eu-repo/semantics/openAccess</field>
</element>
</element>
</element>
<element name="subject">
<element name="en">
<field name="value">Parabolic problemas</field>
<field name="value">Numerical integration</field>
</element>
</element>
<element name="title">
<element name="en">
<field name="value">A combined fractional step domain decomposition method for the numerical integration of parabolic problems</field>
</element>
</element>
<element name="type">
<element name="es">
<field name="value">Contribución a congreso / Biltzarrerako ekarpena</field>
</element>
<element name="en">
<field name="value">info:eu-repo/semantics/conferenceObject</field>
</element>
<element name="version">
<element name="es">
<field name="value">Versión aceptada / Onetsi den bertsioa</field>
</element>
<element name="en">
<field name="value">info:eu-repo/semantics/acceptedVersion</field>
</element>
</element>
</element>
<element name="contributor">
<element name="department">
<element name="es_ES">
<field name="value">Universidad Pública de Navarra. Departamento de Ingeniería Matemática e Informática</field>
</element>
<element name="eu">
<field name="value">Nafarroako Unibertsitate Publikoa. Matematika eta Informatika Ingeniaritza Saila</field>
</element>
</element>
</element>
</element>
<element name="bundles">
<element name="bundle">
<field name="name">TEXT</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">Portero_CombinedFractional.pdf.txt</field>
<field name="originalName">Portero_CombinedFractional.pdf.txt</field>
<field name="description">Extracted text</field>
<field name="format">text/plain</field>
<field name="size">20902</field>
<field name="url">https://academica-e.unavarra.es/xmlui/bitstream/2454/46253/4/Portero_CombinedFractional.pdf.txt</field>
<field name="checksum">1cbae56e4a269722918646d7d083821c</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">4</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">THUMBNAIL</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">Portero_CombinedFractional.pdf.jpg</field>
<field name="originalName">Portero_CombinedFractional.pdf.jpg</field>
<field name="description">IM Thumbnail</field>
<field name="format">image/jpeg</field>
<field name="size">4007</field>
<field name="url">https://academica-e.unavarra.es/xmlui/bitstream/2454/46253/5/Portero_CombinedFractional.pdf.jpg</field>
<field name="checksum">4aa2088235402dd149f7e4c8f748485d</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">5</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">ORIGINAL</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">Portero_CombinedFractional.pdf</field>
<field name="format">application/pdf</field>
<field name="size">308888</field>
<field name="url">https://academica-e.unavarra.es/xmlui/bitstream/2454/46253/1/Portero_CombinedFractional.pdf</field>
<field name="checksum">0017f10f9cafecb16a7d8d2bde533f75</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">1</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">LICENSE</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">license.txt</field>
<field name="originalName">license.txt</field>
<field name="format">text/plain; charset=utf-8</field>
<field name="size">1822</field>
<field name="url">https://academica-e.unavarra.es/xmlui/bitstream/2454/46253/2/license.txt</field>
<field name="checksum">f1b158a779256515758998ebbe33410f</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">2</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">SWORD</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">dublinCore_20230908094614431.zip</field>
<field name="description">Orignal SWORD deposit file</field>
<field name="format">application/octet-stream</field>
<field name="size">297255</field>
<field name="url">https://academica-e.unavarra.es/xmlui/bitstream/2454/46253/3/dublinCore_20230908094614431.zip</field>
<field name="checksum">83c73105b872a92ea1ae327e370d7543</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">3</field>
</element>
</element>
</element>
</element>
<element name="others">
<field name="handle">2454/46253</field>
<field name="identifier">oai:academica-e.unavarra.es:2454/46253</field>
<field name="lastModifyDate">2024-04-17 10:00:13.43</field>
</element>
<element name="repository">
<field name="name">Academica-e</field>
<field name="mail">academica-e@unavarra.es</field>
</element>
<element name="license">
<field name="bin">TElDRU5DSUEgREUgRElTVFJJQlVDScOTTiBOTyBFWENMVVNJVkEKCkFsIGZpcm1hciB5IHJlbWl0aXIgZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBjb25jZWRlIGEgbGEgVW5pdmVyc2lkYWQgUMO6YmxpY2EgZGUgTmF2YXJyYSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBhIHJldXRpbGl6YXIsIHRyYXNmb3JtYXIgKGVuIGxvcyB0w6lybWlub3MgZGVmaW5pZG9zIG3DoXMgYWRlbGFudGUpIHkvbyBhIGRpc3RyaWJ1aXIgZWwgZG9jdW1lbnRvIHF1ZSBsYSBhY29tcGHDsWEgKGluY2x1eWVuZG8gZWwgcmVzdW1lbikgZW4gZm9ybWF0byBpbXByZXNvIG8gZWxlY3Ryw7NuaWNvIHkgZW4gY3VhbHF1aWVyIG90cm8sIGNvbW8gcG9yIGVqZW1wbG8sIGF1ZGlvIG8gdsOtZGVvLgoKQWNlcHRhIHF1ZSBsYSBVbml2ZXJzaWRhZCBQw7pibGljYSBkZSBOYXZhcnJhIHB1ZWRhLCBzaW4gbW9kaWZpY2FyIGVsIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvLCB0cmFuc2Zvcm1hcmxvIGEgY3VhbHF1aWVyIHNvcG9ydGUgbyBmb3JtYXRvIGNvbiBmaW5lcyBkZSBwcmVzZXJ2YWNpw7NuLgoKVGFtYmnDqW4gYWNlcHRhIHF1ZSBsYSBVbml2ZXJzaWRhZCBQw7pibGljYSBkZSBOYXZhcnJhIHB1ZWRhIGd1YXJkYXIgbcOhcyBkZSB1bmEgY29waWEgZGUgw6lsIGNvbiBmaW5lcyBkZSBzZWd1cmlkYWQgeSBwcmVzZXJ2YWNpw7NuLiAKCk1hbmlmaWVzdGEgcXVlIGVzdGUgZG9jdW1lbnRvIGVzIG9icmEgb3JpZ2luYWwgc3V5YSB5IHF1ZSB0aWVuZSBkZXJlY2hvIGEgY2VkZXIgbG9zIGRlcmVjaG9zIHF1ZSBzZSBleHByZXNhbiBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBtYW5pZmllc3RhIHF1ZSwgaGFzdGEgZG9uZGUgc2FiZSwgbm8gaW5mcmluZ2UgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG90cm9zLiAKClNpIGVzdGUgZG9jdW1lbnRvIGNvbnRpZW5lIG1hdGVyaWFsIHNvYnJlIGVsIHF1ZSB1c3RlZCBubyB0aWVuZSBkZXJlY2hvcyBkZSBhdXRvciwgbWFuaWZpZXN0YSBxdWUgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBzaW4gcmVzdHJpY2Npb25lcyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgY2VkZXIgYSBsYSBVbml2ZXJzaWRhZCBQw7pibGljYSBkZSBOYXZhcnJhIGxvcyBkZXJlY2hvcyBleGlnaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSB5IHF1ZSBlbCBtYXRlcmlhbCBwZXJ0ZW5lY2llbnRlIGEgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGRlbnRybyBkZWwgdGV4dG8gbyBlbCBjb250ZW5pZG8gZGUgZXN0ZSBkb2N1bWVudG8uIAoKU2kgZXN0ZSBkb2N1bWVudG8gZXN0w6EgYmFzYWRvIGVuIHVuYSBvYnJhIHF1ZSBoYSBzaWRvIHBhdHJvY2luYWRhIG8gcHJvbW92aWRhIHBvciB1biBvcmdhbmlzbW8gZGlzdGludG8gZGUgbGEgVW5pdmVyc2lkYWQgUMO6YmxpY2EgZGUgTmF2YXJyYSwgdXN0ZWQgYWNlcHRhIHF1ZSBoYSBzYXRpc2ZlY2hvIGN1YWxxdWllciBkZXJlY2hvIGRlIHJldmlzacOzbiB5IGRlbcOhcyBvYmxpZ2FjaW9uZXMgZXhpZ2lkYXMgcG9yIGRpY2hvIGNvbnRyYXRvIG8gYWN1ZXJkby4KCkxhIFVuaXZlcnNpZGFkIFDDumJsaWNhIGRlIE5hdmFycmEgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIHN1KHMpIG5vbWJyZShzKSBjb21vIGF1dG9yKGVzKSBvIHByb3BpZXRhcmlvKHMpIGRlIGVzdGUgZG9jdW1lbnRvIHkgbm8gaGFyw6EgY2FtYmlvcyBxdWUgbm8gc2VhbiBsb3MgcGVybWl0aWRvcyBwb3IgZXN0YSBsaWNlbmNpYS4KCg==</field>
</element>
</metadata>