Logotipo de HISPANA
Logotipo del Ministerio de Cultura
  • ¿Qué es Hispana?
  • Búsqueda
  • Directorio de colecciones
  • Contacto
  • es
    • Español
    • Euskara
    • English
    • Galego
    • Català
    • Valencià
Está en:  › Datos de registro
Linked Open Data
0.6-V 1.65-uW second-order Gm-C bandpass filter for multi-frequency bioimpedance analysis based on a bootstrapped bulk-driven voltage buffer
Identificadores del recurso
Carrillo, J. M., & De La Cruz-Blas, C. A. (2022). 0. 6-v 1. 65-μw second-order gm-c bandpass filter for multi-frequency bioimpedance analysis based on a bootstrapped bulk-driven voltage buffer. Journal of Low Power Electronics and Applications, 12(4), 62. https://doi.org/10.3390/jlpea12040062
2079-9268
10.3390/jlpea12040062
https://academica-e.unavarra.es/handle/2454/45059
Procedencia
(Academica-e: repositorio digital de la Universidad Pública de Navarra)

Ficha

Título:
0.6-V 1.65-uW second-order Gm-C bandpass filter for multi-frequency bioimpedance analysis based on a bootstrapped bulk-driven voltage buffer
Tema:
Bandpass filter
Bootstrapping
Bulk-driven
Linearized transconductor
Quasi-floating gate
Voltage follower
Descripción:
A bootstrapping technique used to increase the intrinsic voltage gain of a bulk-driven MOS transistor is described in this paper. The proposed circuit incorporates a capacitor and a cutoff transistor to be connected to the gate terminal of a bulk-driven MOS device, thus achieving a quasi- floating-gate structure. As a result, the contribution of the gate transconductance is cancelled out and the voltage gain of the device is correspondingly increased. The technique allows for implementing a voltage follower with a voltage gain much closer to unity as compared to the conventional bulk-driven case. This voltage buffer, along with a pseudo-resistor, is used to design a linearized transconduc- tor. The proposed transconductance cell includes an economic continuous tuning mechanism that permits programming the effective transconductance in a range sufficiently wide to counteract the typical variations that process parameters suffer during fabrication. The transconductor has been used to implement a second-order Gm-C bandpass filter with a relatively high selectivity factor, suited for multi-frequency bioimpedance analysis in a very low-voltage environment. All the circuits have been designed in 180 nm CMOS technology to operate with a 0.6-V single-supply voltage. Simulated results show that the proposed technique allows for increasing the linearity and reduc- ing the input-referred noise of the bootstrapped bulk-driven MOS transistor, which results in an improvement of the overall performance of the transconductor. The center frequency of the bandpass filter designed can be programmed in the frequency range from 6.5 kHz to 37.5 kHz with a power consumption ranging between 1.34 μW and 2.19 μW. The circuit presents an in-band integrated noise of 190.5 μVrms and is able to process signals of 110 mVpp with a THD below −40 dB, thus leading to a dynamic range of 47.4 dB
Work funded by projects RTI2018-095994-B-I00, from MCIN/AEI/10.13039/501100011033, and IB18079, from Junta de Extremadura R&D Plan, and by Fondo Europeo de Desarrollo Regional (FEDER) Una manera de hacer Europa.
Idioma:
English
Relación:
Journal of Low Power Electronics and Applications, 2022, 12, 62
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095994-B-I00/ES/
https://doi.org/10.3390/jlpea12040062
Autor/Productor:
Carrillo, Juan M.
Cruz Blas, Carlos Aristóteles de la
Editor:
MDPI
Otros colaboradores/productores:
Ingeniería Eléctrica, Electrónica y de Comunicación
Institute of Smart Cities - ISC
Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
Derechos:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
Fecha:
2022
Tipo de recurso:
info:eu-repo/semantics/article
Versión publicada / Argitaratu den bertsioa
info:eu-repo/semantics/publishedVersion
Formato:
application/pdf

oai_dc

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">

    1. <dc:title>0.6-V 1.65-uW second-order Gm-C bandpass filter for multi-frequency bioimpedance analysis based on a bootstrapped bulk-driven voltage buffer</dc:title>

    2. <dc:creator>Carrillo, Juan M.</dc:creator>

    3. <dc:creator>Cruz Blas, Carlos Aristóteles de la</dc:creator>

    4. <dc:contributor>Ingeniería Eléctrica, Electrónica y de Comunicación</dc:contributor>

    5. <dc:contributor>Institute of Smart Cities - ISC</dc:contributor>

    6. <dc:contributor>Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren</dc:contributor>

    7. <dc:subject>Bandpass filter</dc:subject>

    8. <dc:subject>Bootstrapping</dc:subject>

    9. <dc:subject>Bulk-driven</dc:subject>

    10. <dc:subject>Linearized transconductor</dc:subject>

    11. <dc:subject>Quasi-floating gate</dc:subject>

    12. <dc:subject>Voltage follower</dc:subject>

    13. <dc:description>A bootstrapping technique used to increase the intrinsic voltage gain of a bulk-driven MOS transistor is described in this paper. The proposed circuit incorporates a capacitor and a cutoff transistor to be connected to the gate terminal of a bulk-driven MOS device, thus achieving a quasi- floating-gate structure. As a result, the contribution of the gate transconductance is cancelled out and the voltage gain of the device is correspondingly increased. The technique allows for implementing a voltage follower with a voltage gain much closer to unity as compared to the conventional bulk-driven case. This voltage buffer, along with a pseudo-resistor, is used to design a linearized transconduc- tor. The proposed transconductance cell includes an economic continuous tuning mechanism that permits programming the effective transconductance in a range sufficiently wide to counteract the typical variations that process parameters suffer during fabrication. The transconductor has been used to implement a second-order Gm-C bandpass filter with a relatively high selectivity factor, suited for multi-frequency bioimpedance analysis in a very low-voltage environment. All the circuits have been designed in 180 nm CMOS technology to operate with a 0.6-V single-supply voltage. Simulated results show that the proposed technique allows for increasing the linearity and reduc- ing the input-referred noise of the bootstrapped bulk-driven MOS transistor, which results in an improvement of the overall performance of the transconductor. The center frequency of the bandpass filter designed can be programmed in the frequency range from 6.5 kHz to 37.5 kHz with a power consumption ranging between 1.34 μW and 2.19 μW. The circuit presents an in-band integrated noise of 190.5 μVrms and is able to process signals of 110 mVpp with a THD below −40 dB, thus leading to a dynamic range of 47.4 dB</dc:description>

    14. <dc:description>Work funded by projects RTI2018-095994-B-I00, from MCIN/AEI/10.13039/501100011033, and IB18079, from Junta de Extremadura R&D Plan, and by Fondo Europeo de Desarrollo Regional (FEDER) Una manera de hacer Europa.</dc:description>

    15. <dc:date>2022</dc:date>

    16. <dc:type>info:eu-repo/semantics/article</dc:type>

    17. <dc:type>Versión publicada / Argitaratu den bertsioa</dc:type>

    18. <dc:type>info:eu-repo/semantics/publishedVersion</dc:type>

    19. <dc:identifier>Carrillo, J. M., & De La Cruz-Blas, C. A. (2022). 0. 6-v 1. 65-μw second-order gm-c bandpass filter for multi-frequency bioimpedance analysis based on a bootstrapped bulk-driven voltage buffer. Journal of Low Power Electronics and Applications, 12(4), 62. https://doi.org/10.3390/jlpea12040062</dc:identifier>

    20. <dc:identifier>2079-9268</dc:identifier>

    21. <dc:identifier>10.3390/jlpea12040062</dc:identifier>

    22. <dc:identifier>https://academica-e.unavarra.es/handle/2454/45059</dc:identifier>

    23. <dc:language>eng</dc:language>

    24. <dc:relation>Journal of Low Power Electronics and Applications, 2022, 12, 62</dc:relation>

    25. <dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095994-B-I00/ES/</dc:relation>

    26. <dc:relation>https://doi.org/10.3390/jlpea12040062</dc:relation>

    27. <dc:rights>© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.</dc:rights>

    28. <dc:rights>http://creativecommons.org/licenses/by/4.0/</dc:rights>

    29. <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>

    30. <dc:format>application/pdf</dc:format>

    31. <dc:format>application/pdf</dc:format>

    32. <dc:publisher>MDPI</dc:publisher>

    </oai_dc:dc>

didl

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <d:DIDL schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didl.xsd">

    1. <d:Item id="hdl_2454_45059">

      1. <d:Descriptor>

        1. <d:Statement mimeType="application/xml; charset=utf-8">

          1. <dii:Identifier schemaLocation="urn:mpeg:mpeg21:2002:01-DII-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/dii/dii.xsd">urn:hdl:2454/45059</dii:Identifier>

          </d:Statement>

        </d:Descriptor>

      2. <d:Descriptor>

        1. <d:Statement mimeType="application/xml; charset=utf-8">

          1. <oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">

            1. <dc:title>0.6-V 1.65-uW second-order Gm-C bandpass filter for multi-frequency bioimpedance analysis based on a bootstrapped bulk-driven voltage buffer</dc:title>

            2. <dc:creator>Carrillo, Juan M.</dc:creator>

            3. <dc:creator>Cruz Blas, Carlos Aristóteles de la</dc:creator>

            4. <dc:contributor>Ingeniería Eléctrica, Electrónica y de Comunicación</dc:contributor>

            5. <dc:contributor>Institute of Smart Cities - ISC</dc:contributor>

            6. <dc:contributor>Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren</dc:contributor>

            7. <dc:subject>Bandpass filter</dc:subject>

            8. <dc:subject>Bootstrapping</dc:subject>

            9. <dc:subject>Bulk-driven</dc:subject>

            10. <dc:subject>Linearized transconductor</dc:subject>

            11. <dc:subject>Quasi-floating gate</dc:subject>

            12. <dc:subject>Voltage follower</dc:subject>

            13. <dc:description>A bootstrapping technique used to increase the intrinsic voltage gain of a bulk-driven MOS transistor is described in this paper. The proposed circuit incorporates a capacitor and a cutoff transistor to be connected to the gate terminal of a bulk-driven MOS device, thus achieving a quasi- floating-gate structure. As a result, the contribution of the gate transconductance is cancelled out and the voltage gain of the device is correspondingly increased. The technique allows for implementing a voltage follower with a voltage gain much closer to unity as compared to the conventional bulk-driven case. This voltage buffer, along with a pseudo-resistor, is used to design a linearized transconduc- tor. The proposed transconductance cell includes an economic continuous tuning mechanism that permits programming the effective transconductance in a range sufficiently wide to counteract the typical variations that process parameters suffer during fabrication. The transconductor has been used to implement a second-order Gm-C bandpass filter with a relatively high selectivity factor, suited for multi-frequency bioimpedance analysis in a very low-voltage environment. All the circuits have been designed in 180 nm CMOS technology to operate with a 0.6-V single-supply voltage. Simulated results show that the proposed technique allows for increasing the linearity and reduc- ing the input-referred noise of the bootstrapped bulk-driven MOS transistor, which results in an improvement of the overall performance of the transconductor. The center frequency of the bandpass filter designed can be programmed in the frequency range from 6.5 kHz to 37.5 kHz with a power consumption ranging between 1.34 μW and 2.19 μW. The circuit presents an in-band integrated noise of 190.5 μVrms and is able to process signals of 110 mVpp with a THD below −40 dB, thus leading to a dynamic range of 47.4 dB</dc:description>

            14. <dc:date>2022</dc:date>

            15. <dc:type>info:eu-repo/semantics/article</dc:type>

            16. <dc:identifier>Carrillo, J. M., & De La Cruz-Blas, C. A. (2022). 0. 6-v 1. 65-μw second-order gm-c bandpass filter for multi-frequency bioimpedance analysis based on a bootstrapped bulk-driven voltage buffer. Journal of Low Power Electronics and Applications, 12(4), 62. https://doi.org/10.3390/jlpea12040062</dc:identifier>

            17. <dc:identifier>2079-9268</dc:identifier>

            18. <dc:identifier>10.3390/jlpea12040062</dc:identifier>

            19. <dc:identifier>https://academica-e.unavarra.es/handle/2454/45059</dc:identifier>

            20. <dc:language>eng</dc:language>

            21. <dc:relation>Journal of Low Power Electronics and Applications, 2022, 12, 62</dc:relation>

            22. <dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095994-B-I00/ES/</dc:relation>

            23. <dc:relation>https://doi.org/10.3390/jlpea12040062</dc:relation>

            24. <dc:rights>http://creativecommons.org/licenses/by/4.0/</dc:rights>

            25. <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>

            26. <dc:rights>© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.</dc:rights>

            27. <dc:publisher>MDPI</dc:publisher>

            </oai_dc:dc>

          </d:Statement>

        </d:Descriptor>

      3. <d:Component id="2454_45059_1">

        1. <d:Resource mimeType="application/pdf" ref="https://academica-e.unavarra.es/bitstreams/f1b099e6-6241-4e37-aeaa-2b90ff6fa798/download" />

        </d:Component>

      </d:Item>

    </d:DIDL>

dim

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <dim:dim schemaLocation="http://www.dspace.org/xmlns/dspace/dim http://www.dspace.org/schema/dim.xsd">

    1. <dim:field element="entity" mdschema="dspace" qualifier="type">Publication</dim:field>

    2. <dim:field authority="cce45999-c77a-4df0-84a1-149b0495ee33" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Carrillo, Juan M.</dim:field>

    3. <dim:field authority="virtual::10360" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Cruz Blas, Carlos Aristóteles de la</dim:field>

    4. <dim:field element="contributor" lang="es_ES" mdschema="dc" qualifier="department">Ingeniería Eléctrica, Electrónica y de Comunicación</dim:field>

    5. <dim:field element="contributor" lang="en" mdschema="dc" qualifier="department">Institute of Smart Cities - ISC</dim:field>

    6. <dim:field element="contributor" lang="eu" mdschema="dc" qualifier="department">Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren</dim:field>

    7. <dim:field element="date" mdschema="dc" qualifier="issued">2022</dim:field>

    8. <dim:field element="identifier" lang="en" mdschema="dc" qualifier="citation">Carrillo, J. M., & De La Cruz-Blas, C. A. (2022). 0. 6-v 1. 65-μw second-order gm-c bandpass filter for multi-frequency bioimpedance analysis based on a bootstrapped bulk-driven voltage buffer. Journal of Low Power Electronics and Applications, 12(4), 62. https://doi.org/10.3390/jlpea12040062</dim:field>

    9. <dim:field element="identifier" mdschema="dc" qualifier="issn">2079-9268</dim:field>

    10. <dim:field element="identifier" mdschema="dc" qualifier="doi">10.3390/jlpea12040062</dim:field>

    11. <dim:field element="identifier" mdschema="dc" qualifier="uri">https://academica-e.unavarra.es/handle/2454/45059</dim:field>

    12. <dim:field element="description" lang="en" mdschema="dc" qualifier="abstract">A bootstrapping technique used to increase the intrinsic voltage gain of a bulk-driven MOS transistor is described in this paper. The proposed circuit incorporates a capacitor and a cutoff transistor to be connected to the gate terminal of a bulk-driven MOS device, thus achieving a quasi- floating-gate structure. As a result, the contribution of the gate transconductance is cancelled out and the voltage gain of the device is correspondingly increased. The technique allows for implementing a voltage follower with a voltage gain much closer to unity as compared to the conventional bulk-driven case. This voltage buffer, along with a pseudo-resistor, is used to design a linearized transconduc- tor. The proposed transconductance cell includes an economic continuous tuning mechanism that permits programming the effective transconductance in a range sufficiently wide to counteract the typical variations that process parameters suffer during fabrication. The transconductor has been used to implement a second-order Gm-C bandpass filter with a relatively high selectivity factor, suited for multi-frequency bioimpedance analysis in a very low-voltage environment. All the circuits have been designed in 180 nm CMOS technology to operate with a 0.6-V single-supply voltage. Simulated results show that the proposed technique allows for increasing the linearity and reduc- ing the input-referred noise of the bootstrapped bulk-driven MOS transistor, which results in an improvement of the overall performance of the transconductor. The center frequency of the bandpass filter designed can be programmed in the frequency range from 6.5 kHz to 37.5 kHz with a power consumption ranging between 1.34 μW and 2.19 μW. The circuit presents an in-band integrated noise of 190.5 μVrms and is able to process signals of 110 mVpp with a THD below −40 dB, thus leading to a dynamic range of 47.4 dB</dim:field>

    13. <dim:field element="description" lang="en" mdschema="dc" qualifier="sponsorship">Work funded by projects RTI2018-095994-B-I00, from MCIN/AEI/10.13039/501100011033, and IB18079, from Junta de Extremadura R&D Plan, and by Fondo Europeo de Desarrollo Regional (FEDER) Una manera de hacer Europa.</dim:field>

    14. <dim:field element="format" lang="en" mdschema="dc" qualifier="mimetype">application/pdf</dim:field>

    15. <dim:field element="language" lang="en" mdschema="dc" qualifier="iso">eng</dim:field>

    16. <dim:field element="publisher" lang="en" mdschema="dc">MDPI</dim:field>

    17. <dim:field element="relation" lang="en" mdschema="dc" qualifier="ispartof">Journal of Low Power Electronics and Applications, 2022, 12, 62</dim:field>

    18. <dim:field element="relation" lang="en" mdschema="dc" qualifier="projectID">info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095994-B-I00/ES/</dim:field>

    19. <dim:field element="relation" mdschema="dc" qualifier="publisherversion">https://doi.org/10.3390/jlpea12040062</dim:field>

    20. <dim:field element="rights" lang="en" mdschema="dc">© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.</dim:field>

    21. <dim:field element="rights" mdschema="dc" qualifier="uri">http://creativecommons.org/licenses/by/4.0/</dim:field>

    22. <dim:field element="rights" mdschema="dc" qualifier="accessRights">info:eu-repo/semantics/openAccess</dim:field>

    23. <dim:field element="subject" lang="en" mdschema="dc">Bandpass filter</dim:field>

    24. <dim:field element="subject" lang="en" mdschema="dc">Bootstrapping</dim:field>

    25. <dim:field element="subject" lang="en" mdschema="dc">Bulk-driven</dim:field>

    26. <dim:field element="subject" lang="en" mdschema="dc">Linearized transconductor</dim:field>

    27. <dim:field element="subject" lang="en" mdschema="dc">Quasi-floating gate</dim:field>

    28. <dim:field element="subject" lang="en" mdschema="dc">Voltage follower</dim:field>

    29. <dim:field element="title" lang="en" mdschema="dc">0.6-V 1.65-uW second-order Gm-C bandpass filter for multi-frequency bioimpedance analysis based on a bootstrapped bulk-driven voltage buffer</dim:field>

    30. <dim:field element="type" mdschema="dc">info:eu-repo/semantics/article</dim:field>

    31. <dim:field element="type" lang="es" mdschema="dc" qualifier="version">Versión publicada / Argitaratu den bertsioa</dim:field>

    32. <dim:field element="type" lang="en" mdschema="dc" qualifier="version">info:eu-repo/semantics/publishedVersion</dim:field>

    33. <dim:field authority="virtual::10360" confidence="-1" element="isAuthorOfPublication" mdschema="relation">0f463668-5e83-4f16-9712-1dbcbeb46735</dim:field>

    34. <dim:field authority="virtual::10360" confidence="-1" element="isAuthorOfPublication" mdschema="relation" qualifier="latestForDiscovery">0f463668-5e83-4f16-9712-1dbcbeb46735</dim:field>

    </dim:dim>

etdms

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <thesis schemaLocation="http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd">

    1. <title>0.6-V 1.65-uW second-order Gm-C bandpass filter for multi-frequency bioimpedance analysis based on a bootstrapped bulk-driven voltage buffer</title>

    2. <creator>Carrillo, Juan M.</creator>

    3. <creator>Cruz Blas, Carlos Aristóteles de la</creator>

    4. <contributor>Ingeniería Eléctrica, Electrónica y de Comunicación</contributor>

    5. <contributor>Institute of Smart Cities - ISC</contributor>

    6. <contributor>Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren</contributor>

    7. <subject>Bandpass filter</subject>

    8. <subject>Bootstrapping</subject>

    9. <subject>Bulk-driven</subject>

    10. <subject>Linearized transconductor</subject>

    11. <subject>Quasi-floating gate</subject>

    12. <subject>Voltage follower</subject>

    13. <description>A bootstrapping technique used to increase the intrinsic voltage gain of a bulk-driven MOS transistor is described in this paper. The proposed circuit incorporates a capacitor and a cutoff transistor to be connected to the gate terminal of a bulk-driven MOS device, thus achieving a quasi- floating-gate structure. As a result, the contribution of the gate transconductance is cancelled out and the voltage gain of the device is correspondingly increased. The technique allows for implementing a voltage follower with a voltage gain much closer to unity as compared to the conventional bulk-driven case. This voltage buffer, along with a pseudo-resistor, is used to design a linearized transconduc- tor. The proposed transconductance cell includes an economic continuous tuning mechanism that permits programming the effective transconductance in a range sufficiently wide to counteract the typical variations that process parameters suffer during fabrication. The transconductor has been used to implement a second-order Gm-C bandpass filter with a relatively high selectivity factor, suited for multi-frequency bioimpedance analysis in a very low-voltage environment. All the circuits have been designed in 180 nm CMOS technology to operate with a 0.6-V single-supply voltage. Simulated results show that the proposed technique allows for increasing the linearity and reduc- ing the input-referred noise of the bootstrapped bulk-driven MOS transistor, which results in an improvement of the overall performance of the transconductor. The center frequency of the bandpass filter designed can be programmed in the frequency range from 6.5 kHz to 37.5 kHz with a power consumption ranging between 1.34 μW and 2.19 μW. The circuit presents an in-band integrated noise of 190.5 μVrms and is able to process signals of 110 mVpp with a THD below −40 dB, thus leading to a dynamic range of 47.4 dB</description>

    14. <date>2022</date>

    15. <type>info:eu-repo/semantics/article</type>

    16. <identifier>Carrillo, J. M., & De La Cruz-Blas, C. A. (2022). 0. 6-v 1. 65-μw second-order gm-c bandpass filter for multi-frequency bioimpedance analysis based on a bootstrapped bulk-driven voltage buffer. Journal of Low Power Electronics and Applications, 12(4), 62. https://doi.org/10.3390/jlpea12040062</identifier>

    17. <identifier>2079-9268</identifier>

    18. <identifier>10.3390/jlpea12040062</identifier>

    19. <identifier>https://academica-e.unavarra.es/handle/2454/45059</identifier>

    20. <language>eng</language>

    21. <relation>Journal of Low Power Electronics and Applications, 2022, 12, 62</relation>

    22. <relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095994-B-I00/ES/</relation>

    23. <relation>https://doi.org/10.3390/jlpea12040062</relation>

    24. <rights>http://creativecommons.org/licenses/by/4.0/</rights>

    25. <rights>info:eu-repo/semantics/openAccess</rights>

    26. <rights>© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.</rights>

    27. <publisher>MDPI</publisher>

    </thesis>

marc

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">

    1. <leader>00925njm 22002777a 4500</leader>

    2. <datafield ind1=" " ind2=" " tag="042">

      1. <subfield code="a">dc</subfield>

      </datafield>

    3. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Carrillo, Juan M.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    4. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Cruz Blas, Carlos Aristóteles de la</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    5. <datafield ind1=" " ind2=" " tag="260">

      1. <subfield code="c">2022</subfield>

      </datafield>

    6. <datafield ind1=" " ind2=" " tag="520">

      1. <subfield code="a">A bootstrapping technique used to increase the intrinsic voltage gain of a bulk-driven MOS transistor is described in this paper. The proposed circuit incorporates a capacitor and a cutoff transistor to be connected to the gate terminal of a bulk-driven MOS device, thus achieving a quasi- floating-gate structure. As a result, the contribution of the gate transconductance is cancelled out and the voltage gain of the device is correspondingly increased. The technique allows for implementing a voltage follower with a voltage gain much closer to unity as compared to the conventional bulk-driven case. This voltage buffer, along with a pseudo-resistor, is used to design a linearized transconduc- tor. The proposed transconductance cell includes an economic continuous tuning mechanism that permits programming the effective transconductance in a range sufficiently wide to counteract the typical variations that process parameters suffer during fabrication. The transconductor has been used to implement a second-order Gm-C bandpass filter with a relatively high selectivity factor, suited for multi-frequency bioimpedance analysis in a very low-voltage environment. All the circuits have been designed in 180 nm CMOS technology to operate with a 0.6-V single-supply voltage. Simulated results show that the proposed technique allows for increasing the linearity and reduc- ing the input-referred noise of the bootstrapped bulk-driven MOS transistor, which results in an improvement of the overall performance of the transconductor. The center frequency of the bandpass filter designed can be programmed in the frequency range from 6.5 kHz to 37.5 kHz with a power consumption ranging between 1.34 μW and 2.19 μW. The circuit presents an in-band integrated noise of 190.5 μVrms and is able to process signals of 110 mVpp with a THD below −40 dB, thus leading to a dynamic range of 47.4 dB</subfield>

      </datafield>

    7. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">Carrillo, J. M., & De La Cruz-Blas, C. A. (2022). 0. 6-v 1. 65-μw second-order gm-c bandpass filter for multi-frequency bioimpedance analysis based on a bootstrapped bulk-driven voltage buffer. Journal of Low Power Electronics and Applications, 12(4), 62. https://doi.org/10.3390/jlpea12040062</subfield>

      </datafield>

    8. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">2079-9268</subfield>

      </datafield>

    9. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">10.3390/jlpea12040062</subfield>

      </datafield>

    10. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">https://academica-e.unavarra.es/handle/2454/45059</subfield>

      </datafield>

    11. <datafield ind1=" " ind2=" " tag="653">

      1. <subfield code="a">Bandpass filter</subfield>

      </datafield>

    12. <datafield ind1=" " ind2=" " tag="653">

      1. <subfield code="a">Bootstrapping</subfield>

      </datafield>

    13. <datafield ind1=" " ind2=" " tag="653">

      1. <subfield code="a">Bulk-driven</subfield>

      </datafield>

    14. <datafield ind1=" " ind2=" " tag="653">

      1. <subfield code="a">Linearized transconductor</subfield>

      </datafield>

    15. <datafield ind1=" " ind2=" " tag="653">

      1. <subfield code="a">Quasi-floating gate</subfield>

      </datafield>

    16. <datafield ind1=" " ind2=" " tag="653">

      1. <subfield code="a">Voltage follower</subfield>

      </datafield>

    17. <datafield ind1="0" ind2="0" tag="245">

      1. <subfield code="a">0.6-V 1.65-uW second-order Gm-C bandpass filter for multi-frequency bioimpedance analysis based on a bootstrapped bulk-driven voltage buffer</subfield>

      </datafield>

    </record>

mets

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <mets ID=" DSpace_ITEM_2454-45059" OBJID=" hdl:2454/45059" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">

    1. <metsHdr CREATEDATE="2025-03-05T03:51:42Z">

      1. <agent ROLE="CUSTODIAN" TYPE="ORGANIZATION">

        1. <name>Academica-e</name>

        </agent>

      </metsHdr>

    2. <dmdSec ID="DMD_2454_45059">

      1. <mdWrap MDTYPE="MODS">

        1. <xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">

          1. <mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">

            1. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Carrillo, Juan M.</mods:namePart>

              </mods:name>

            2. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Cruz Blas, Carlos Aristóteles de la</mods:namePart>

              </mods:name>

            3. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">department</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Ingeniería Eléctrica, Electrónica y de Comunicación</mods:namePart>

              </mods:name>

            4. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">department</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Institute of Smart Cities - ISC</mods:namePart>

              </mods:name>

            5. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">department</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren</mods:namePart>

              </mods:name>

            6. <mods:originInfo>

              1. <mods:dateIssued encoding="iso8601">2022</mods:dateIssued>

              </mods:originInfo>

            7. <mods:identifier type="citation">Carrillo, J. M., & De La Cruz-Blas, C. A. (2022). 0. 6-v 1. 65-μw second-order gm-c bandpass filter for multi-frequency bioimpedance analysis based on a bootstrapped bulk-driven voltage buffer. Journal of Low Power Electronics and Applications, 12(4), 62. https://doi.org/10.3390/jlpea12040062</mods:identifier>

            8. <mods:identifier type="issn">2079-9268</mods:identifier>

            9. <mods:identifier type="doi">10.3390/jlpea12040062</mods:identifier>

            10. <mods:identifier type="uri">https://academica-e.unavarra.es/handle/2454/45059</mods:identifier>

            11. <mods:abstract>A bootstrapping technique used to increase the intrinsic voltage gain of a bulk-driven MOS transistor is described in this paper. The proposed circuit incorporates a capacitor and a cutoff transistor to be connected to the gate terminal of a bulk-driven MOS device, thus achieving a quasi- floating-gate structure. As a result, the contribution of the gate transconductance is cancelled out and the voltage gain of the device is correspondingly increased. The technique allows for implementing a voltage follower with a voltage gain much closer to unity as compared to the conventional bulk-driven case. This voltage buffer, along with a pseudo-resistor, is used to design a linearized transconduc- tor. The proposed transconductance cell includes an economic continuous tuning mechanism that permits programming the effective transconductance in a range sufficiently wide to counteract the typical variations that process parameters suffer during fabrication. The transconductor has been used to implement a second-order Gm-C bandpass filter with a relatively high selectivity factor, suited for multi-frequency bioimpedance analysis in a very low-voltage environment. All the circuits have been designed in 180 nm CMOS technology to operate with a 0.6-V single-supply voltage. Simulated results show that the proposed technique allows for increasing the linearity and reduc- ing the input-referred noise of the bootstrapped bulk-driven MOS transistor, which results in an improvement of the overall performance of the transconductor. The center frequency of the bandpass filter designed can be programmed in the frequency range from 6.5 kHz to 37.5 kHz with a power consumption ranging between 1.34 μW and 2.19 μW. The circuit presents an in-band integrated noise of 190.5 μVrms and is able to process signals of 110 mVpp with a THD below −40 dB, thus leading to a dynamic range of 47.4 dB</mods:abstract>

            12. <mods:language>

              1. <mods:languageTerm authority="rfc3066">eng</mods:languageTerm>

              </mods:language>

            13. <mods:accessCondition type="useAndReproduction">© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.</mods:accessCondition>

            14. <mods:subject>

              1. <mods:topic>Bandpass filter</mods:topic>

              </mods:subject>

            15. <mods:subject>

              1. <mods:topic>Bootstrapping</mods:topic>

              </mods:subject>

            16. <mods:subject>

              1. <mods:topic>Bulk-driven</mods:topic>

              </mods:subject>

            17. <mods:subject>

              1. <mods:topic>Linearized transconductor</mods:topic>

              </mods:subject>

            18. <mods:subject>

              1. <mods:topic>Quasi-floating gate</mods:topic>

              </mods:subject>

            19. <mods:subject>

              1. <mods:topic>Voltage follower</mods:topic>

              </mods:subject>

            20. <mods:titleInfo>

              1. <mods:title>0.6-V 1.65-uW second-order Gm-C bandpass filter for multi-frequency bioimpedance analysis based on a bootstrapped bulk-driven voltage buffer</mods:title>

              </mods:titleInfo>

            21. <mods:genre>info:eu-repo/semantics/article</mods:genre>

            </mods:mods>

          </xmlData>

        </mdWrap>

      </dmdSec>

    3. <amdSec ID="TMD_2454_45059">

      1. <rightsMD ID="RIG_2454_45059">

        1. <mdWrap MDTYPE="OTHER" MIMETYPE="text/plain" OTHERMDTYPE="DSpaceDepositLicense">

          1. <binData>TElDRU5DSUEgREUgRElTVFJJQlVDScOTTiBOTyBFWENMVVNJVkEKCkFsIGZpcm1hciB5IHJlbWl0aXIgZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBjb25jZWRlIGEgbGEgVW5pdmVyc2lkYWQgUMO6YmxpY2EgZGUgTmF2YXJyYSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBhIHJldXRpbGl6YXIsIHRyYXNmb3JtYXIgKGVuIGxvcyB0w6lybWlub3MgZGVmaW5pZG9zIG3DoXMgYWRlbGFudGUpIHkvbyBhIGRpc3RyaWJ1aXIgZWwgZG9jdW1lbnRvIHF1ZSBsYSBhY29tcGHDsWEgKGluY2x1eWVuZG8gZWwgcmVzdW1lbikgZW4gZm9ybWF0byBpbXByZXNvIG8gZWxlY3Ryw7NuaWNvIHkgZW4gY3VhbHF1aWVyIG90cm8sIGNvbW8gcG9yIGVqZW1wbG8sIGF1ZGlvIG8gdsOtZGVvLgoKQWNlcHRhIHF1ZSBsYSBVbml2ZXJzaWRhZCBQw7pibGljYSBkZSBOYXZhcnJhIHB1ZWRhLCBzaW4gbW9kaWZpY2FyIGVsIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvLCB0cmFuc2Zvcm1hcmxvIGEgY3VhbHF1aWVyIHNvcG9ydGUgbyBmb3JtYXRvIGNvbiBmaW5lcyBkZSBwcmVzZXJ2YWNpw7NuLgoKVGFtYmnDqW4gYWNlcHRhIHF1ZSBsYSBVbml2ZXJzaWRhZCBQw7pibGljYSBkZSBOYXZhcnJhIHB1ZWRhIGd1YXJkYXIgbcOhcyBkZSB1bmEgY29waWEgZGUgw6lsIGNvbiBmaW5lcyBkZSBzZWd1cmlkYWQgeSBwcmVzZXJ2YWNpw7NuLiAKCk1hbmlmaWVzdGEgcXVlIGVzdGUgZG9jdW1lbnRvIGVzIG9icmEgb3JpZ2luYWwgc3V5YSB5IHF1ZSB0aWVuZSBkZXJlY2hvIGEgY2VkZXIgbG9zIGRlcmVjaG9zIHF1ZSBzZSBleHByZXNhbiBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBtYW5pZmllc3RhIHF1ZSwgaGFzdGEgZG9uZGUgc2FiZSwgbm8gaW5mcmluZ2UgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG90cm9zLiAKClNpIGVzdGUgZG9jdW1lbnRvIGNvbnRpZW5lIG1hdGVyaWFsIHNvYnJlIGVsIHF1ZSB1c3RlZCBubyB0aWVuZSBkZXJlY2hvcyBkZSBhdXRvciwgbWFuaWZpZXN0YSBxdWUgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBzaW4gcmVzdHJpY2Npb25lcyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgY2VkZXIgYSBsYSBVbml2ZXJzaWRhZCBQw7pibGljYSBkZSBOYXZhcnJhIGxvcyBkZXJlY2hvcyBleGlnaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSB5IHF1ZSBlbCBtYXRlcmlhbCBwZXJ0ZW5lY2llbnRlIGEgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGRlbnRybyBkZWwgdGV4dG8gbyBlbCBjb250ZW5pZG8gZGUgZXN0ZSBkb2N1bWVudG8uIAoKU2kgZXN0ZSBkb2N1bWVudG8gZXN0w6EgYmFzYWRvIGVuIHVuYSBvYnJhIHF1ZSBoYSBzaWRvIHBhdHJvY2luYWRhIG8gcHJvbW92aWRhIHBvciB1biBvcmdhbmlzbW8gZGlzdGludG8gZGUgbGEgVW5pdmVyc2lkYWQgUMO6YmxpY2EgZGUgTmF2YXJyYSwgdXN0ZWQgYWNlcHRhIHF1ZSBoYSBzYXRpc2ZlY2hvIGN1YWxxdWllciBkZXJlY2hvIGRlIHJldmlzacOzbiB5IGRlbcOhcyBvYmxpZ2FjaW9uZXMgZXhpZ2lkYXMgcG9yIGRpY2hvIGNvbnRyYXRvIG8gYWN1ZXJkby4KCkxhIFVuaXZlcnNpZGFkIFDDumJsaWNhIGRlIE5hdmFycmEgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIHN1KHMpIG5vbWJyZShzKSBjb21vIGF1dG9yKGVzKSBvIHByb3BpZXRhcmlvKHMpIGRlIGVzdGUgZG9jdW1lbnRvIHkgbm8gaGFyw6EgY2FtYmlvcyBxdWUgbm8gc2VhbiBsb3MgcGVybWl0aWRvcyBwb3IgZXN0YSBsaWNlbmNpYS4KCg==</binData>

          </mdWrap>

        </rightsMD>

      </amdSec>

    4. <amdSec ID="FO_2454_45059_1">

      1. <techMD ID="TECH_O_2454_45059_1">

        1. <mdWrap MDTYPE="PREMIS">

          1. <xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">

            1. <premis:premis>

              1. <premis:object>

                1. <premis:objectIdentifier>

                  1. <premis:objectIdentifierType>URL</premis:objectIdentifierType>

                  2. <premis:objectIdentifierValue>https://academica-e.unavarra.es/bitstreams/f1b099e6-6241-4e37-aeaa-2b90ff6fa798/download</premis:objectIdentifierValue>

                  </premis:objectIdentifier>

                2. <premis:objectCategory>File</premis:objectCategory>

                3. <premis:objectCharacteristics>

                  1. <premis:fixity>

                    1. <premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>

                    2. <premis:messageDigest>dab0ee6cf870242a3dd4380e34812163</premis:messageDigest>

                    </premis:fixity>

                  2. <premis:size>512018</premis:size>

                  3. <premis:format>

                    1. <premis:formatDesignation>

                      1. <premis:formatName>application/pdf</premis:formatName>

                      </premis:formatDesignation>

                    </premis:format>

                  </premis:objectCharacteristics>

                4. <premis:originalName>Carrillo_SecondOrder.pdf</premis:originalName>

                </premis:object>

              </premis:premis>

            </xmlData>

          </mdWrap>

        </techMD>

      </amdSec>

    5. <amdSec ID="FT_2454_45059_4">

      1. <techMD ID="TECH_T_2454_45059_4">

        1. <mdWrap MDTYPE="PREMIS">

          1. <xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">

            1. <premis:premis>

              1. <premis:object>

                1. <premis:objectIdentifier>

                  1. <premis:objectIdentifierType>URL</premis:objectIdentifierType>

                  2. <premis:objectIdentifierValue>https://academica-e.unavarra.es/bitstreams/61d951d4-0674-4051-bb6f-ac9cd3146fad/download</premis:objectIdentifierValue>

                  </premis:objectIdentifier>

                2. <premis:objectCategory>File</premis:objectCategory>

                3. <premis:objectCharacteristics>

                  1. <premis:fixity>

                    1. <premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>

                    2. <premis:messageDigest>253aa32db6ce827ab9a253d7004c0528</premis:messageDigest>

                    </premis:fixity>

                  2. <premis:size>50155</premis:size>

                  3. <premis:format>

                    1. <premis:formatDesignation>

                      1. <premis:formatName>text/plain</premis:formatName>

                      </premis:formatDesignation>

                    </premis:format>

                  </premis:objectCharacteristics>

                4. <premis:originalName>Carrillo_SecondOrder.pdf.txt</premis:originalName>

                </premis:object>

              </premis:premis>

            </xmlData>

          </mdWrap>

        </techMD>

      </amdSec>

    6. <fileSec>

      1. <fileGrp USE="ORIGINAL">

        1. <file ADMID="FO_2454_45059_1" CHECKSUM="dab0ee6cf870242a3dd4380e34812163" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_2454_45059_1" ID="BITSTREAM_ORIGINAL_2454_45059_1" MIMETYPE="application/pdf" SEQ="1" SIZE="512018">

          1. <FLocat LOCTYPE="URL" href="https://academica-e.unavarra.es/bitstreams/f1b099e6-6241-4e37-aeaa-2b90ff6fa798/download" type="simple" />

          </file>

        </fileGrp>

      2. <fileGrp USE="TEXT">

        1. <file ADMID="FT_2454_45059_4" CHECKSUM="253aa32db6ce827ab9a253d7004c0528" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_2454_45059_4" ID="BITSTREAM_TEXT_2454_45059_4" MIMETYPE="text/plain" SEQ="4" SIZE="50155">

          1. <FLocat LOCTYPE="URL" href="https://academica-e.unavarra.es/bitstreams/61d951d4-0674-4051-bb6f-ac9cd3146fad/download" type="simple" />

          </file>

        </fileGrp>

      </fileSec>

    7. <structMap LABEL="DSpace Object" TYPE="LOGICAL">

      1. <div ADMID="DMD_2454_45059" TYPE="DSpace Object Contents">

        1. <div TYPE="DSpace BITSTREAM">

          1. <fptr FILEID="BITSTREAM_ORIGINAL_2454_45059_1" />

          </div>

        </div>

      </structMap>

    </mets>

mods

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">

    1. <mods:name>

      1. <mods:namePart>Carrillo, Juan M.</mods:namePart>

      </mods:name>

    2. <mods:name>

      1. <mods:namePart>Cruz Blas, Carlos Aristóteles de la</mods:namePart>

      </mods:name>

    3. <mods:originInfo>

      1. <mods:dateIssued encoding="iso8601">2022</mods:dateIssued>

      </mods:originInfo>

    4. <mods:identifier type="citation">Carrillo, J. M., & De La Cruz-Blas, C. A. (2022). 0. 6-v 1. 65-μw second-order gm-c bandpass filter for multi-frequency bioimpedance analysis based on a bootstrapped bulk-driven voltage buffer. Journal of Low Power Electronics and Applications, 12(4), 62. https://doi.org/10.3390/jlpea12040062</mods:identifier>

    5. <mods:identifier type="issn">2079-9268</mods:identifier>

    6. <mods:identifier type="doi">10.3390/jlpea12040062</mods:identifier>

    7. <mods:identifier type="uri">https://academica-e.unavarra.es/handle/2454/45059</mods:identifier>

    8. <mods:abstract>A bootstrapping technique used to increase the intrinsic voltage gain of a bulk-driven MOS transistor is described in this paper. The proposed circuit incorporates a capacitor and a cutoff transistor to be connected to the gate terminal of a bulk-driven MOS device, thus achieving a quasi- floating-gate structure. As a result, the contribution of the gate transconductance is cancelled out and the voltage gain of the device is correspondingly increased. The technique allows for implementing a voltage follower with a voltage gain much closer to unity as compared to the conventional bulk-driven case. This voltage buffer, along with a pseudo-resistor, is used to design a linearized transconduc- tor. The proposed transconductance cell includes an economic continuous tuning mechanism that permits programming the effective transconductance in a range sufficiently wide to counteract the typical variations that process parameters suffer during fabrication. The transconductor has been used to implement a second-order Gm-C bandpass filter with a relatively high selectivity factor, suited for multi-frequency bioimpedance analysis in a very low-voltage environment. All the circuits have been designed in 180 nm CMOS technology to operate with a 0.6-V single-supply voltage. Simulated results show that the proposed technique allows for increasing the linearity and reduc- ing the input-referred noise of the bootstrapped bulk-driven MOS transistor, which results in an improvement of the overall performance of the transconductor. The center frequency of the bandpass filter designed can be programmed in the frequency range from 6.5 kHz to 37.5 kHz with a power consumption ranging between 1.34 μW and 2.19 μW. The circuit presents an in-band integrated noise of 190.5 μVrms and is able to process signals of 110 mVpp with a THD below −40 dB, thus leading to a dynamic range of 47.4 dB</mods:abstract>

    9. <mods:language>

      1. <mods:languageTerm>eng</mods:languageTerm>

      </mods:language>

    10. <mods:accessCondition type="useAndReproduction">http://creativecommons.org/licenses/by/4.0/</mods:accessCondition>

    11. <mods:accessCondition type="useAndReproduction">info:eu-repo/semantics/openAccess</mods:accessCondition>

    12. <mods:accessCondition type="useAndReproduction">© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.</mods:accessCondition>

    13. <mods:subject>

      1. <mods:topic>Bandpass filter</mods:topic>

      </mods:subject>

    14. <mods:subject>

      1. <mods:topic>Bootstrapping</mods:topic>

      </mods:subject>

    15. <mods:subject>

      1. <mods:topic>Bulk-driven</mods:topic>

      </mods:subject>

    16. <mods:subject>

      1. <mods:topic>Linearized transconductor</mods:topic>

      </mods:subject>

    17. <mods:subject>

      1. <mods:topic>Quasi-floating gate</mods:topic>

      </mods:subject>

    18. <mods:subject>

      1. <mods:topic>Voltage follower</mods:topic>

      </mods:subject>

    19. <mods:titleInfo>

      1. <mods:title>0.6-V 1.65-uW second-order Gm-C bandpass filter for multi-frequency bioimpedance analysis based on a bootstrapped bulk-driven voltage buffer</mods:title>

      </mods:titleInfo>

    20. <mods:genre>info:eu-repo/semantics/article</mods:genre>

    </mods:mods>

oai_openaire

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <oaire:resource schemaLocation="http://namespace.openaire.eu/schema/oaire/ https://www.openaire.eu/schema/repo-lit/4.0/openaire.xsd">

    1. <datacite:titles>

      1. <datacite:title lang="en">0.6-V 1.65-uW second-order Gm-C bandpass filter for multi-frequency bioimpedance analysis based on a bootstrapped bulk-driven voltage buffer</datacite:title>

      </datacite:titles>

    2. <datacite:creators>

      1. <datacite:creator>

        1. <datacite:creatorName>Carrillo, Juan M.</datacite:creatorName>

        </datacite:creator>

      2. <datacite:creator>

        1. <datacite:creatorName nameType="Personal">Cruz Blas, Carlos Aristóteles de la</datacite:creatorName>

        2. <datacite:nameIdentifier nameIdentifierScheme="DSpace" schemeURI="http://dspace.org">/items/0f463668-5e83-4f16-9712-1dbcbeb46735</datacite:nameIdentifier>

        3. <datacite:nameIdentifier nameIdentifierScheme="DSpace" schemeURI="http://dspace.org">/items/0f463668-5e83-4f16-9712-1dbcbeb46735</datacite:nameIdentifier>

        </datacite:creator>

      </datacite:creators>

    3. <datacite:contributors>

      1. <datacite:contributor>

        1. <datacite:contributorName>Ingeniería Eléctrica, Electrónica y de Comunicación</datacite:contributorName>

        </datacite:contributor>

      2. <datacite:contributor>

        1. <datacite:contributorName>Institute of Smart Cities - ISC</datacite:contributorName>

        </datacite:contributor>

      3. <datacite:contributor>

        1. <datacite:contributorName>Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren</datacite:contributorName>

        </datacite:contributor>

      4. <datacite:contributor contributorType="HostingInstitution">

        1. <datacite:contributorName nameType="Organizational">Academica-e</datacite:contributorName>

        2. <datacite:nameIdentifier nameIdentifierScheme="e-mail" schemeURI="mailto:academica-e@unavarra.es">academica-e@unavarra.es</datacite:nameIdentifier>

        </datacite:contributor>

      </datacite:contributors>

    4. <oaire:fundingReferences />
    5. <datacite:relatedIdentifiers>

      1. <datacite:relatedIdentifier relatedIdentifierType="ISSN" relationType="IsPartOf">2079-9268</datacite:relatedIdentifier>

      2. <datacite:relatedIdentifier relatedIdentifierType="DOI" relationType="IsPartOf">10.3390/jlpea12040062</datacite:relatedIdentifier>

      </datacite:relatedIdentifiers>

    6. <datacite:dates>

      1. <datacite:date dateType="Accepted">2022</datacite:date>

      2. <datacite:date dateType="Issued">2022</datacite:date>

      </datacite:dates>

    7. <dc:language>eng</dc:language>

    8. <dc:publisher>MDPI</dc:publisher>

    9. <oaire:resourceType resourceTypeGeneral="literature" uri="http://purl.org/coar/resource_type/c_6501">journal article</oaire:resourceType>

    10. <dc:description lang="en">A bootstrapping technique used to increase the intrinsic voltage gain of a bulk-driven MOS transistor is described in this paper. The proposed circuit incorporates a capacitor and a cutoff transistor to be connected to the gate terminal of a bulk-driven MOS device, thus achieving a quasi- floating-gate structure. As a result, the contribution of the gate transconductance is cancelled out and the voltage gain of the device is correspondingly increased. The technique allows for implementing a voltage follower with a voltage gain much closer to unity as compared to the conventional bulk-driven case. This voltage buffer, along with a pseudo-resistor, is used to design a linearized transconduc- tor. The proposed transconductance cell includes an economic continuous tuning mechanism that permits programming the effective transconductance in a range sufficiently wide to counteract the typical variations that process parameters suffer during fabrication. The transconductor has been used to implement a second-order Gm-C bandpass filter with a relatively high selectivity factor, suited for multi-frequency bioimpedance analysis in a very low-voltage environment. All the circuits have been designed in 180 nm CMOS technology to operate with a 0.6-V single-supply voltage. Simulated results show that the proposed technique allows for increasing the linearity and reduc- ing the input-referred noise of the bootstrapped bulk-driven MOS transistor, which results in an improvement of the overall performance of the transconductor. The center frequency of the bandpass filter designed can be programmed in the frequency range from 6.5 kHz to 37.5 kHz with a power consumption ranging between 1.34 μW and 2.19 μW. The circuit presents an in-band integrated noise of 190.5 μVrms and is able to process signals of 110 mVpp with a THD below −40 dB, thus leading to a dynamic range of 47.4 dB</dc:description>

    11. <dc:format>application/pdf</dc:format>

    12. <datacite:identifier identifierType="URL">https://academica-e.unavarra.es/handle/2454/45059</datacite:identifier>

    13. <datacite:rights rightsURI="http://purl.org/coar/access_right/c_abf2">open access</datacite:rights>

    14. <datacite:subjects>

      1. <datacite:subject>Bandpass filter</datacite:subject>

      2. <datacite:subject>Bootstrapping</datacite:subject>

      3. <datacite:subject>Bulk-driven</datacite:subject>

      4. <datacite:subject>Linearized transconductor</datacite:subject>

      5. <datacite:subject>Quasi-floating gate</datacite:subject>

      6. <datacite:subject>Voltage follower</datacite:subject>

      </datacite:subjects>

    15. <datacite:sizes>

      1. <datacite:size>512018 bytes</datacite:size>

      </datacite:sizes>

    16. <datacite:sizes />
    17. <datacite:sizes />
    18. <datacite:sizes />
    19. <datacite:sizes />
    20. <oaire:file accessRightsURI="http://purl.org/coar/access_right/c_abf2" mimeType="application/pdf" objectType="fulltext">https://academica-e.unavarra.es/bitstreams/f1b099e6-6241-4e37-aeaa-2b90ff6fa798/download</oaire:file>

    21. <oaire:licenseCondition startDate="2022" uri="http://creativecommons.org/licenses/by/4.0/">© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.</oaire:licenseCondition>

    </oaire:resource>

ore

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">

    1. <atom:id>https://academica-e.unavarra.es/handle/2454/45059/ore.xml</atom:id>

    2. <atom:link href="https://academica-e.unavarra.es/handle/2454/45059" rel="alternate" />
    3. <atom:link href="https://academica-e.unavarra.es/handle/2454/45059/ore.xml" rel="http://www.openarchives.org/ore/terms/describes" />
    4. <atom:link href="https://academica-e.unavarra.es/handle/2454/45059/ore.xml#atom" rel="self" type="application/atom+xml" />
    5. <atom:published />
    6. <atom:updated />
    7. <atom:source>

      1. <atom:generator>Academica-e</atom:generator>

      </atom:source>

    8. <atom:title>0.6-V 1.65-uW second-order Gm-C bandpass filter for multi-frequency bioimpedance analysis based on a bootstrapped bulk-driven voltage buffer</atom:title>

    9. <atom:author>

      1. <atom:name>Carrillo, Juan M.</atom:name>

      </atom:author>

    10. <atom:author>

      1. <atom:name>Cruz Blas, Carlos Aristóteles de la</atom:name>

      </atom:author>

    11. <atom:category label="Aggregation" scheme="http://www.openarchives.org/ore/terms/" term="http://www.openarchives.org/ore/terms/Aggregation" />
    12. <atom:category scheme="http://www.openarchives.org/ore/atom/modified" term="" />
    13. <atom:category label="DSpace Item" scheme="http://www.dspace.org/objectModel/" term="DSpaceItem" />
    14. <atom:link href="https://academica-e.unavarra.es/bitstreams/f1b099e6-6241-4e37-aeaa-2b90ff6fa798/download" length="512018" rel="http://www.openarchives.org/ore/terms/aggregates" title="Carrillo_SecondOrder.pdf" type="application/pdf" />
    15. <oreatom:triples>

      1. <rdf:Description about="https://academica-e.unavarra.es/handle/2454/45059/ore.xml#atom">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceItem" />
        2. <dcterms:modified />

        </rdf:Description>

      2. <rdf:Description about="https://academica-e.unavarra.es/bitstreams/f1b099e6-6241-4e37-aeaa-2b90ff6fa798/download">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceBitstream" />
        2. <dcterms:description>ORIGINAL</dcterms:description>

        </rdf:Description>

      3. <rdf:Description about="https://academica-e.unavarra.es/bitstreams/c2b1fa53-9bbf-4ace-a19b-79e3767c719b/download">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceBitstream" />
        2. <dcterms:description>LICENSE</dcterms:description>

        </rdf:Description>

      4. <rdf:Description about="https://academica-e.unavarra.es/bitstreams/fe23dd77-7d48-4985-8069-24a28d58886d/download">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceBitstream" />
        2. <dcterms:description>SWORD</dcterms:description>

        </rdf:Description>

      5. <rdf:Description about="https://academica-e.unavarra.es/bitstreams/67a66c1d-5836-4545-a3f5-f7f6c6713025/download">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceBitstream" />
        2. <dcterms:description>THUMBNAIL</dcterms:description>

        </rdf:Description>

      6. <rdf:Description about="https://academica-e.unavarra.es/bitstreams/61d951d4-0674-4051-bb6f-ac9cd3146fad/download">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceBitstream" />
        2. <dcterms:description>TEXT</dcterms:description>

        </rdf:Description>

      </oreatom:triples>

    </atom:entry>

qdc

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">

    1. <dc:title>0.6-V 1.65-uW second-order Gm-C bandpass filter for multi-frequency bioimpedance analysis based on a bootstrapped bulk-driven voltage buffer</dc:title>

    2. <dc:creator>Carrillo, Juan M.</dc:creator>

    3. <dc:creator>Cruz Blas, Carlos Aristóteles de la</dc:creator>

    4. <dc:contributor>Ingeniería Eléctrica, Electrónica y de Comunicación</dc:contributor>

    5. <dc:contributor>Institute of Smart Cities - ISC</dc:contributor>

    6. <dc:contributor>Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren</dc:contributor>

    7. <dc:subject>Bandpass filter</dc:subject>

    8. <dc:subject>Bootstrapping</dc:subject>

    9. <dc:subject>Bulk-driven</dc:subject>

    10. <dc:subject>Linearized transconductor</dc:subject>

    11. <dc:subject>Quasi-floating gate</dc:subject>

    12. <dc:subject>Voltage follower</dc:subject>

    13. <dcterms:abstract>A bootstrapping technique used to increase the intrinsic voltage gain of a bulk-driven MOS transistor is described in this paper. The proposed circuit incorporates a capacitor and a cutoff transistor to be connected to the gate terminal of a bulk-driven MOS device, thus achieving a quasi- floating-gate structure. As a result, the contribution of the gate transconductance is cancelled out and the voltage gain of the device is correspondingly increased. The technique allows for implementing a voltage follower with a voltage gain much closer to unity as compared to the conventional bulk-driven case. This voltage buffer, along with a pseudo-resistor, is used to design a linearized transconduc- tor. The proposed transconductance cell includes an economic continuous tuning mechanism that permits programming the effective transconductance in a range sufficiently wide to counteract the typical variations that process parameters suffer during fabrication. The transconductor has been used to implement a second-order Gm-C bandpass filter with a relatively high selectivity factor, suited for multi-frequency bioimpedance analysis in a very low-voltage environment. All the circuits have been designed in 180 nm CMOS technology to operate with a 0.6-V single-supply voltage. Simulated results show that the proposed technique allows for increasing the linearity and reduc- ing the input-referred noise of the bootstrapped bulk-driven MOS transistor, which results in an improvement of the overall performance of the transconductor. The center frequency of the bandpass filter designed can be programmed in the frequency range from 6.5 kHz to 37.5 kHz with a power consumption ranging between 1.34 μW and 2.19 μW. The circuit presents an in-band integrated noise of 190.5 μVrms and is able to process signals of 110 mVpp with a THD below −40 dB, thus leading to a dynamic range of 47.4 dB</dcterms:abstract>

    14. <dcterms:issued>2022</dcterms:issued>

    15. <dc:type>info:eu-repo/semantics/article</dc:type>

    16. <dc:identifier>Carrillo, J. M., & De La Cruz-Blas, C. A. (2022). 0. 6-v 1. 65-μw second-order gm-c bandpass filter for multi-frequency bioimpedance analysis based on a bootstrapped bulk-driven voltage buffer. Journal of Low Power Electronics and Applications, 12(4), 62. https://doi.org/10.3390/jlpea12040062</dc:identifier>

    17. <dc:identifier>2079-9268</dc:identifier>

    18. <dc:identifier>10.3390/jlpea12040062</dc:identifier>

    19. <dc:identifier>https://academica-e.unavarra.es/handle/2454/45059</dc:identifier>

    20. <dc:language>eng</dc:language>

    21. <dc:relation>Journal of Low Power Electronics and Applications, 2022, 12, 62</dc:relation>

    22. <dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095994-B-I00/ES/</dc:relation>

    23. <dc:relation>https://doi.org/10.3390/jlpea12040062</dc:relation>

    24. <dc:rights>http://creativecommons.org/licenses/by/4.0/</dc:rights>

    25. <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>

    26. <dc:rights>© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.</dc:rights>

    27. <dc:publisher>MDPI</dc:publisher>

    </qdc:qualifieddc>

rdf

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">

    1. <ow:Publication about="oai:academica-e.unavarra.es:2454/45059">

      1. <dc:title>0.6-V 1.65-uW second-order Gm-C bandpass filter for multi-frequency bioimpedance analysis based on a bootstrapped bulk-driven voltage buffer</dc:title>

      2. <dc:creator>Carrillo, Juan M.</dc:creator>

      3. <dc:creator>Cruz Blas, Carlos Aristóteles de la</dc:creator>

      4. <dc:contributor>Ingeniería Eléctrica, Electrónica y de Comunicación</dc:contributor>

      5. <dc:contributor>Institute of Smart Cities - ISC</dc:contributor>

      6. <dc:contributor>Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren</dc:contributor>

      7. <dc:subject>Bandpass filter</dc:subject>

      8. <dc:subject>Bootstrapping</dc:subject>

      9. <dc:subject>Bulk-driven</dc:subject>

      10. <dc:subject>Linearized transconductor</dc:subject>

      11. <dc:subject>Quasi-floating gate</dc:subject>

      12. <dc:subject>Voltage follower</dc:subject>

      13. <dc:description>A bootstrapping technique used to increase the intrinsic voltage gain of a bulk-driven MOS transistor is described in this paper. The proposed circuit incorporates a capacitor and a cutoff transistor to be connected to the gate terminal of a bulk-driven MOS device, thus achieving a quasi- floating-gate structure. As a result, the contribution of the gate transconductance is cancelled out and the voltage gain of the device is correspondingly increased. The technique allows for implementing a voltage follower with a voltage gain much closer to unity as compared to the conventional bulk-driven case. This voltage buffer, along with a pseudo-resistor, is used to design a linearized transconduc- tor. The proposed transconductance cell includes an economic continuous tuning mechanism that permits programming the effective transconductance in a range sufficiently wide to counteract the typical variations that process parameters suffer during fabrication. The transconductor has been used to implement a second-order Gm-C bandpass filter with a relatively high selectivity factor, suited for multi-frequency bioimpedance analysis in a very low-voltage environment. All the circuits have been designed in 180 nm CMOS technology to operate with a 0.6-V single-supply voltage. Simulated results show that the proposed technique allows for increasing the linearity and reduc- ing the input-referred noise of the bootstrapped bulk-driven MOS transistor, which results in an improvement of the overall performance of the transconductor. The center frequency of the bandpass filter designed can be programmed in the frequency range from 6.5 kHz to 37.5 kHz with a power consumption ranging between 1.34 μW and 2.19 μW. The circuit presents an in-band integrated noise of 190.5 μVrms and is able to process signals of 110 mVpp with a THD below −40 dB, thus leading to a dynamic range of 47.4 dB</dc:description>

      14. <dc:date>2022</dc:date>

      15. <dc:type>info:eu-repo/semantics/article</dc:type>

      16. <dc:identifier>Carrillo, J. M., & De La Cruz-Blas, C. A. (2022). 0. 6-v 1. 65-μw second-order gm-c bandpass filter for multi-frequency bioimpedance analysis based on a bootstrapped bulk-driven voltage buffer. Journal of Low Power Electronics and Applications, 12(4), 62. https://doi.org/10.3390/jlpea12040062</dc:identifier>

      17. <dc:identifier>2079-9268</dc:identifier>

      18. <dc:identifier>10.3390/jlpea12040062</dc:identifier>

      19. <dc:identifier>https://academica-e.unavarra.es/handle/2454/45059</dc:identifier>

      20. <dc:language>eng</dc:language>

      21. <dc:relation>Journal of Low Power Electronics and Applications, 2022, 12, 62</dc:relation>

      22. <dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095994-B-I00/ES/</dc:relation>

      23. <dc:relation>https://doi.org/10.3390/jlpea12040062</dc:relation>

      24. <dc:rights>http://creativecommons.org/licenses/by/4.0/</dc:rights>

      25. <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>

      26. <dc:rights>© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.</dc:rights>

      27. <dc:publisher>MDPI</dc:publisher>

      </ow:Publication>

    </rdf:RDF>

xoai

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <metadata schemaLocation="http://www.lyncode.com/xoai http://www.lyncode.com/xsd/xoai.xsd">

    1. <element name="dspace">

      1. <element name="entity">

        1. <element name="type">

          1. <element name="none">

            1. <field name="value">Publication</field>

            </element>

          </element>

        </element>

      </element>

    2. <element name="dc">

      1. <element name="contributor">

        1. <element name="author">

          1. <element name="none">

            1. <field name="value">Carrillo, Juan M.</field>

            2. <field name="authority">cce45999-c77a-4df0-84a1-149b0495ee33</field>

            3. <field name="confidence">-1</field>

            4. <field name="value">Cruz Blas, Carlos Aristóteles de la</field>

            5. <field name="authority">virtual::10360</field>

            6. <field name="confidence">-1</field>

            </element>

          </element>

        2. <element name="department">

          1. <element name="es_ES">

            1. <field name="value">Ingeniería Eléctrica, Electrónica y de Comunicación</field>

            </element>

          2. <element name="en">

            1. <field name="value">Institute of Smart Cities - ISC</field>

            </element>

          3. <element name="eu">

            1. <field name="value">Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren</field>

            </element>

          </element>

        </element>

      2. <element name="date">

        1. <element name="issued">

          1. <element name="none">

            1. <field name="value">2022</field>

            </element>

          </element>

        </element>

      3. <element name="identifier">

        1. <element name="citation">

          1. <element name="en">

            1. <field name="value">Carrillo, J. M., & De La Cruz-Blas, C. A. (2022). 0. 6-v 1. 65-μw second-order gm-c bandpass filter for multi-frequency bioimpedance analysis based on a bootstrapped bulk-driven voltage buffer. Journal of Low Power Electronics and Applications, 12(4), 62. https://doi.org/10.3390/jlpea12040062</field>

            </element>

          </element>

        2. <element name="issn">

          1. <element name="none">

            1. <field name="value">2079-9268</field>

            </element>

          </element>

        3. <element name="doi">

          1. <element name="none">

            1. <field name="value">10.3390/jlpea12040062</field>

            </element>

          </element>

        4. <element name="uri">

          1. <element name="none">

            1. <field name="value">https://academica-e.unavarra.es/handle/2454/45059</field>

            </element>

          </element>

        </element>

      4. <element name="description">

        1. <element name="abstract">

          1. <element name="en">

            1. <field name="value">A bootstrapping technique used to increase the intrinsic voltage gain of a bulk-driven MOS transistor is described in this paper. The proposed circuit incorporates a capacitor and a cutoff transistor to be connected to the gate terminal of a bulk-driven MOS device, thus achieving a quasi- floating-gate structure. As a result, the contribution of the gate transconductance is cancelled out and the voltage gain of the device is correspondingly increased. The technique allows for implementing a voltage follower with a voltage gain much closer to unity as compared to the conventional bulk-driven case. This voltage buffer, along with a pseudo-resistor, is used to design a linearized transconduc- tor. The proposed transconductance cell includes an economic continuous tuning mechanism that permits programming the effective transconductance in a range sufficiently wide to counteract the typical variations that process parameters suffer during fabrication. The transconductor has been used to implement a second-order Gm-C bandpass filter with a relatively high selectivity factor, suited for multi-frequency bioimpedance analysis in a very low-voltage environment. All the circuits have been designed in 180 nm CMOS technology to operate with a 0.6-V single-supply voltage. Simulated results show that the proposed technique allows for increasing the linearity and reduc- ing the input-referred noise of the bootstrapped bulk-driven MOS transistor, which results in an improvement of the overall performance of the transconductor. The center frequency of the bandpass filter designed can be programmed in the frequency range from 6.5 kHz to 37.5 kHz with a power consumption ranging between 1.34 μW and 2.19 μW. The circuit presents an in-band integrated noise of 190.5 μVrms and is able to process signals of 110 mVpp with a THD below −40 dB, thus leading to a dynamic range of 47.4 dB</field>

            </element>

          </element>

        2. <element name="sponsorship">

          1. <element name="en">

            1. <field name="value">Work funded by projects RTI2018-095994-B-I00, from MCIN/AEI/10.13039/501100011033, and IB18079, from Junta de Extremadura R&D Plan, and by Fondo Europeo de Desarrollo Regional (FEDER) Una manera de hacer Europa.</field>

            </element>

          </element>

        </element>

      5. <element name="format">

        1. <element name="mimetype">

          1. <element name="en">

            1. <field name="value">application/pdf</field>

            </element>

          </element>

        </element>

      6. <element name="language">

        1. <element name="iso">

          1. <element name="en">

            1. <field name="value">eng</field>

            </element>

          </element>

        </element>

      7. <element name="publisher">

        1. <element name="en">

          1. <field name="value">MDPI</field>

          </element>

        </element>

      8. <element name="relation">

        1. <element name="ispartof">

          1. <element name="en">

            1. <field name="value">Journal of Low Power Electronics and Applications, 2022, 12, 62</field>

            </element>

          </element>

        2. <element name="projectID">

          1. <element name="en">

            1. <field name="value">info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095994-B-I00/ES/</field>

            </element>

          </element>

        3. <element name="publisherversion">

          1. <element name="none">

            1. <field name="value">https://doi.org/10.3390/jlpea12040062</field>

            </element>

          </element>

        </element>

      9. <element name="rights">

        1. <element name="en">

          1. <field name="value">© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.</field>

          </element>

        2. <element name="uri">

          1. <element name="none">

            1. <field name="value">http://creativecommons.org/licenses/by/4.0/</field>

            </element>

          </element>

        3. <element name="accessRights">

          1. <element name="none">

            1. <field name="value">info:eu-repo/semantics/openAccess</field>

            </element>

          </element>

        </element>

      10. <element name="subject">

        1. <element name="en">

          1. <field name="value">Bandpass filter</field>

          2. <field name="value">Bootstrapping</field>

          3. <field name="value">Bulk-driven</field>

          4. <field name="value">Linearized transconductor</field>

          5. <field name="value">Quasi-floating gate</field>

          6. <field name="value">Voltage follower</field>

          </element>

        </element>

      11. <element name="title">

        1. <element name="en">

          1. <field name="value">0.6-V 1.65-uW second-order Gm-C bandpass filter for multi-frequency bioimpedance analysis based on a bootstrapped bulk-driven voltage buffer</field>

          </element>

        </element>

      12. <element name="type">

        1. <element name="none">

          1. <field name="value">info:eu-repo/semantics/article</field>

          </element>

        2. <element name="version">

          1. <element name="es">

            1. <field name="value">Versión publicada / Argitaratu den bertsioa</field>

            </element>

          2. <element name="en">

            1. <field name="value">info:eu-repo/semantics/publishedVersion</field>

            </element>

          </element>

        </element>

      </element>

    3. <element name="relation">

      1. <element name="isAuthorOfPublication">

        1. <element name="none">

          1. <field name="value">0f463668-5e83-4f16-9712-1dbcbeb46735</field>

          2. <field name="authority">virtual::10360</field>

          3. <field name="confidence">-1</field>

          </element>

        2. <element name="latestForDiscovery">

          1. <element name="none">

            1. <field name="value">0f463668-5e83-4f16-9712-1dbcbeb46735</field>

            2. <field name="authority">virtual::10360</field>

            3. <field name="confidence">-1</field>

            </element>

          </element>

        </element>

      </element>

    4. <element name="bundles">

      1. <element name="bundle">

        1. <field name="name">ORIGINAL</field>

        2. <element name="bitstreams">

          1. <element name="bitstream">

            1. <field name="name">Carrillo_SecondOrder.pdf</field>

            2. <field name="format">application/pdf</field>

            3. <field name="size">512018</field>

            4. <field name="url">https://academica-e.unavarra.es/bitstreams/f1b099e6-6241-4e37-aeaa-2b90ff6fa798/download</field>

            5. <field name="checksum">dab0ee6cf870242a3dd4380e34812163</field>

            6. <field name="checksumAlgorithm">MD5</field>

            7. <field name="sid">1</field>

            </element>

          </element>

        </element>

      2. <element name="bundle">

        1. <field name="name">LICENSE</field>

        2. <element name="bitstreams">

          1. <element name="bitstream">

            1. <field name="name">license.txt</field>

            2. <field name="originalName">license.txt</field>

            3. <field name="format">text/plain; charset=utf-8</field>

            4. <field name="size">1822</field>

            5. <field name="url">https://academica-e.unavarra.es/bitstreams/c2b1fa53-9bbf-4ace-a19b-79e3767c719b/download</field>

            6. <field name="checksum">f1b158a779256515758998ebbe33410f</field>

            7. <field name="checksumAlgorithm">MD5</field>

            8. <field name="sid">2</field>

            </element>

          </element>

        </element>

      3. <element name="bundle">

        1. <field name="name">SWORD</field>

        2. <element name="bitstreams">

          1. <element name="bitstream">

            1. <field name="name">dublinCore_20230405184418083.zip</field>

            2. <field name="description">Orignal SWORD deposit file</field>

            3. <field name="format">application/octet-stream</field>

            4. <field name="size">489629</field>

            5. <field name="url">https://academica-e.unavarra.es/bitstreams/fe23dd77-7d48-4985-8069-24a28d58886d/download</field>

            6. <field name="checksum">ce6e6b406e6abe916978d22404177541</field>

            7. <field name="checksumAlgorithm">MD5</field>

            8. <field name="sid">3</field>

            </element>

          </element>

        </element>

      4. <element name="bundle">

        1. <field name="name">THUMBNAIL</field>

        2. <element name="bitstreams">

          1. <element name="bitstream">

            1. <field name="name">Carrillo_SecondOrder.pdf.jpg</field>

            2. <field name="originalName">Carrillo_SecondOrder.pdf.jpg</field>

            3. <field name="description">IM Thumbnail</field>

            4. <field name="format">image/jpeg</field>

            5. <field name="size">9024</field>

            6. <field name="url">https://academica-e.unavarra.es/bitstreams/67a66c1d-5836-4545-a3f5-f7f6c6713025/download</field>

            7. <field name="checksum">fc77ab8034948b9ccd752a8048459c54</field>

            8. <field name="checksumAlgorithm">MD5</field>

            9. <field name="sid">5</field>

            </element>

          </element>

        </element>

      5. <element name="bundle">

        1. <field name="name">TEXT</field>

        2. <element name="bitstreams">

          1. <element name="bitstream">

            1. <field name="name">Carrillo_SecondOrder.pdf.txt</field>

            2. <field name="originalName">Carrillo_SecondOrder.pdf.txt</field>

            3. <field name="description">Extracted text</field>

            4. <field name="format">text/plain</field>

            5. <field name="size">50155</field>

            6. <field name="url">https://academica-e.unavarra.es/bitstreams/61d951d4-0674-4051-bb6f-ac9cd3146fad/download</field>

            7. <field name="checksum">253aa32db6ce827ab9a253d7004c0528</field>

            8. <field name="checksumAlgorithm">MD5</field>

            9. <field name="sid">4</field>

            </element>

          </element>

        </element>

      </element>

    5. <element name="others">

      1. <field name="handle">2454/45059</field>

      2. <field name="identifier">oai:academica-e.unavarra.es:2454/45059</field>

      3. <field name="lastModifyDate">2024-10-11 11:22:55.091</field>

      4. <element name="cc">

        1. <field name="uri">http://creativecommons.org/licenses/by/4.0/</field>

        2. <field name="name">© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.</field>

        </element>

      5. <element name="access-status">

        1. <field name="value">open.access</field>

        </element>

      </element>

    6. <element name="repository">

      1. <field name="url">https://academica-e.unavarra.es</field>

      2. <field name="name">Academica-e</field>

      3. <field name="mail">academica-e@unavarra.es</field>

      </element>

    7. <element name="license">

      1. <field name="bin">TElDRU5DSUEgREUgRElTVFJJQlVDScOTTiBOTyBFWENMVVNJVkEKCkFsIGZpcm1hciB5IHJlbWl0aXIgZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBjb25jZWRlIGEgbGEgVW5pdmVyc2lkYWQgUMO6YmxpY2EgZGUgTmF2YXJyYSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBhIHJldXRpbGl6YXIsIHRyYXNmb3JtYXIgKGVuIGxvcyB0w6lybWlub3MgZGVmaW5pZG9zIG3DoXMgYWRlbGFudGUpIHkvbyBhIGRpc3RyaWJ1aXIgZWwgZG9jdW1lbnRvIHF1ZSBsYSBhY29tcGHDsWEgKGluY2x1eWVuZG8gZWwgcmVzdW1lbikgZW4gZm9ybWF0byBpbXByZXNvIG8gZWxlY3Ryw7NuaWNvIHkgZW4gY3VhbHF1aWVyIG90cm8sIGNvbW8gcG9yIGVqZW1wbG8sIGF1ZGlvIG8gdsOtZGVvLgoKQWNlcHRhIHF1ZSBsYSBVbml2ZXJzaWRhZCBQw7pibGljYSBkZSBOYXZhcnJhIHB1ZWRhLCBzaW4gbW9kaWZpY2FyIGVsIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvLCB0cmFuc2Zvcm1hcmxvIGEgY3VhbHF1aWVyIHNvcG9ydGUgbyBmb3JtYXRvIGNvbiBmaW5lcyBkZSBwcmVzZXJ2YWNpw7NuLgoKVGFtYmnDqW4gYWNlcHRhIHF1ZSBsYSBVbml2ZXJzaWRhZCBQw7pibGljYSBkZSBOYXZhcnJhIHB1ZWRhIGd1YXJkYXIgbcOhcyBkZSB1bmEgY29waWEgZGUgw6lsIGNvbiBmaW5lcyBkZSBzZWd1cmlkYWQgeSBwcmVzZXJ2YWNpw7NuLiAKCk1hbmlmaWVzdGEgcXVlIGVzdGUgZG9jdW1lbnRvIGVzIG9icmEgb3JpZ2luYWwgc3V5YSB5IHF1ZSB0aWVuZSBkZXJlY2hvIGEgY2VkZXIgbG9zIGRlcmVjaG9zIHF1ZSBzZSBleHByZXNhbiBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBtYW5pZmllc3RhIHF1ZSwgaGFzdGEgZG9uZGUgc2FiZSwgbm8gaW5mcmluZ2UgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG90cm9zLiAKClNpIGVzdGUgZG9jdW1lbnRvIGNvbnRpZW5lIG1hdGVyaWFsIHNvYnJlIGVsIHF1ZSB1c3RlZCBubyB0aWVuZSBkZXJlY2hvcyBkZSBhdXRvciwgbWFuaWZpZXN0YSBxdWUgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBzaW4gcmVzdHJpY2Npb25lcyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgY2VkZXIgYSBsYSBVbml2ZXJzaWRhZCBQw7pibGljYSBkZSBOYXZhcnJhIGxvcyBkZXJlY2hvcyBleGlnaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSB5IHF1ZSBlbCBtYXRlcmlhbCBwZXJ0ZW5lY2llbnRlIGEgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGRlbnRybyBkZWwgdGV4dG8gbyBlbCBjb250ZW5pZG8gZGUgZXN0ZSBkb2N1bWVudG8uIAoKU2kgZXN0ZSBkb2N1bWVudG8gZXN0w6EgYmFzYWRvIGVuIHVuYSBvYnJhIHF1ZSBoYSBzaWRvIHBhdHJvY2luYWRhIG8gcHJvbW92aWRhIHBvciB1biBvcmdhbmlzbW8gZGlzdGludG8gZGUgbGEgVW5pdmVyc2lkYWQgUMO6YmxpY2EgZGUgTmF2YXJyYSwgdXN0ZWQgYWNlcHRhIHF1ZSBoYSBzYXRpc2ZlY2hvIGN1YWxxdWllciBkZXJlY2hvIGRlIHJldmlzacOzbiB5IGRlbcOhcyBvYmxpZ2FjaW9uZXMgZXhpZ2lkYXMgcG9yIGRpY2hvIGNvbnRyYXRvIG8gYWN1ZXJkby4KCkxhIFVuaXZlcnNpZGFkIFDDumJsaWNhIGRlIE5hdmFycmEgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIHN1KHMpIG5vbWJyZShzKSBjb21vIGF1dG9yKGVzKSBvIHByb3BpZXRhcmlvKHMpIGRlIGVzdGUgZG9jdW1lbnRvIHkgbm8gaGFyw6EgY2FtYmlvcyBxdWUgbm8gc2VhbiBsb3MgcGVybWl0aWRvcyBwb3IgZXN0YSBsaWNlbmNpYS4KCg==</field>

      </element>

    </metadata>

Hispana

Portal de acceso al patrimonio digital y el agregador nacional de contenidos a Europeana.

Contacto

Accede a nuestro formulario y te contestaremos con la mayor brevedad.

Contacto

X

Tweets by Hispana_roai

Facebook

HISPANA
© Ministerio de Cultura
  • Aviso Legal