Logotipo de HISPANA
Logotipo del Ministerio de Cultura
  • ¿Qué es Hispana?
  • Búsqueda
  • Directorio de colecciones
  • Contacto
  • es
    • Español
    • Euskara
    • English
    • Galego
    • Català
    • Valencià
Está en:  › Datos de registro
Linked Open Data
3D Fine-scale terrain variables from underwater photogrammetry: a new approach to benthic microhabitat modeling in a circalittoral rocky shelf
Identificadores del recurso
2072-4292
REN2002-00916/MAR
http://hdl.handle.net/10902/19148
10.3390/rs12152466
Procedencia
(Repositorio Abierto de la Universidad de Cantabria)

Ficha

Título:
3D Fine-scale terrain variables from underwater photogrammetry: a new approach to benthic microhabitat modeling in a circalittoral rocky shelf
Tema:
Circalittoral rocky shelf
Underwater 3D photogrammetry
Structure-from-motion
Avilés Canyon System
Benthic habitat modeling
Deep-learning
YOLO
Annotation of underwater images
Descripción:
The relationship between 3D terrain complexity and fine-scale localization and distribution of species is poorly understood. Here we present a very fine-scale 3D reconstruction model of three zones of circalittoral rocky shelf in the Bay of Biscay. Detailed terrain variables are extracted from 3D models using a structure-from-motion (SfM) approach applied to ROTV images. Significant terrain variables that explain species location were selected using general additive models (GAMs) and micro-distribution of the species were predicted. Two models combining BPI, curvature and rugosity can explain 55% and 77% of the Ophiuroidea and Crinoidea distribution, respectively. The third model contributes to explaining the terrain variables that induce the localization of Dendrophyllia cornigera. GAM univariate models detect the terrain variables for each structural species in this third zone (Artemisina transiens, D. cornigera and Phakellia ventilabrum). To avoid the time-consuming task of manual annotation of presence, a deep-learning algorithm (YOLO v4) is proposed. This approach achieves very high reliability and low uncertainty in automatic object detection, identification and location. These new advances applied to underwater imagery (SfM and deep-learning) can resolve the very-high resolution information needed for predictive microhabitat modeling in a very complex zone.
This research was partially funded in the scope of the European Commission LIFE+ “Nature and Biodiversity” call and included in the LIFE IP INTEMARES project (LIFE15 IPE/ES/000,012). Moreover, it was partially funded by the Spanish Science and Technology Ministry and included in the ECOMARG (Scientific and technical assistance for the declaration, management and protection of MPAs in Spain) Project (REN2002-00,916/MAR). Deep-learning advances presented here are part of Deep-RAMP (Deep learning to improve the management of marine protected area network in the North Atlantic region) project funded in the frame of the Pleamar Program of the Biodiversity Foundation of the Ministry for Ecological Transition and is co-financed by the European Maritime and Fisheries Fund (EMFF).
Fuente:
Remote Sensing, 2020, 12(15), 2466
Idioma:
English
Autor/Productor:
Prado Ortega, Elena
Rodríguez Basalo, Augusto
Cobo García, Adolfo
Ríos López, María Pilar
Sánchez Delgado, Francisco
Editor:
MDPI
Otros colaboradores/productores:
Universidad de Cantabria
Derechos:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
http://creativecommons.org/licenses/by/4.0/
openAccess
Fecha:
2020-09-21T12:58:10Z
2020-07-31
Tipo de recurso:
info:eu-repo/semantics/article
publishedVersion

oai_dc

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">

    1. <dc:title>3D Fine-scale terrain variables from underwater photogrammetry: a new approach to benthic microhabitat modeling in a circalittoral rocky shelf</dc:title>

    2. <dc:creator>Prado Ortega, Elena</dc:creator>

    3. <dc:creator>Rodríguez Basalo, Augusto</dc:creator>

    4. <dc:creator>Cobo García, Adolfo</dc:creator>

    5. <dc:creator>Ríos López, María Pilar</dc:creator>

    6. <dc:creator>Sánchez Delgado, Francisco</dc:creator>

    7. <dc:contributor>Universidad de Cantabria</dc:contributor>

    8. <dc:subject>Circalittoral rocky shelf</dc:subject>

    9. <dc:subject>Underwater 3D photogrammetry</dc:subject>

    10. <dc:subject>Structure-from-motion</dc:subject>

    11. <dc:subject>Avilés Canyon System</dc:subject>

    12. <dc:subject>Benthic habitat modeling</dc:subject>

    13. <dc:subject>Deep-learning</dc:subject>

    14. <dc:subject>YOLO</dc:subject>

    15. <dc:subject>Annotation of underwater images</dc:subject>

    16. <dc:description>The relationship between 3D terrain complexity and fine-scale localization and distribution of species is poorly understood. Here we present a very fine-scale 3D reconstruction model of three zones of circalittoral rocky shelf in the Bay of Biscay. Detailed terrain variables are extracted from 3D models using a structure-from-motion (SfM) approach applied to ROTV images. Significant terrain variables that explain species location were selected using general additive models (GAMs) and micro-distribution of the species were predicted. Two models combining BPI, curvature and rugosity can explain 55% and 77% of the Ophiuroidea and Crinoidea distribution, respectively. The third model contributes to explaining the terrain variables that induce the localization of Dendrophyllia cornigera. GAM univariate models detect the terrain variables for each structural species in this third zone (Artemisina transiens, D. cornigera and Phakellia ventilabrum). To avoid the time-consuming task of manual annotation of presence, a deep-learning algorithm (YOLO v4) is proposed. This approach achieves very high reliability and low uncertainty in automatic object detection, identification and location. These new advances applied to underwater imagery (SfM and deep-learning) can resolve the very-high resolution information needed for predictive microhabitat modeling in a very complex zone.</dc:description>

    17. <dc:description>This research was partially funded in the scope of the European Commission LIFE+ “Nature and Biodiversity” call and included in the LIFE IP INTEMARES project (LIFE15 IPE/ES/000,012). Moreover, it was partially funded by the Spanish Science and Technology Ministry and included in the ECOMARG (Scientific and technical assistance for the declaration, management and protection of MPAs in Spain) Project (REN2002-00,916/MAR). Deep-learning advances presented here are part of Deep-RAMP (Deep learning to improve the management of marine protected area network in the North Atlantic region) project funded in the frame of the Pleamar Program of the Biodiversity Foundation of the Ministry for Ecological Transition and is co-financed by the European Maritime and Fisheries Fund (EMFF).</dc:description>

    18. <dc:date>2020-09-21T12:58:10Z</dc:date>

    19. <dc:date>2020-09-21T12:58:10Z</dc:date>

    20. <dc:date>2020-07-31</dc:date>

    21. <dc:type>info:eu-repo/semantics/article</dc:type>

    22. <dc:type>publishedVersion</dc:type>

    23. <dc:identifier>2072-4292</dc:identifier>

    24. <dc:identifier>REN2002-00916/MAR</dc:identifier>

    25. <dc:identifier>http://hdl.handle.net/10902/19148</dc:identifier>

    26. <dc:identifier>10.3390/rs12152466</dc:identifier>

    27. <dc:language>eng</dc:language>

    28. <dc:rights>© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.</dc:rights>

    29. <dc:rights>http://creativecommons.org/licenses/by/4.0/</dc:rights>

    30. <dc:rights>openAccess</dc:rights>

    31. <dc:publisher>MDPI</dc:publisher>

    32. <dc:source>Remote Sensing, 2020, 12(15), 2466</dc:source>

    </oai_dc:dc>

edm

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <rdf:RDF schemaLocation="http://www.w3.org/1999/02/22-rdf-syntax-ns# http://www.europeana.eu/schemas/edm/EDM.xsd">

    1. <edm:ProvidedCHO about="http://hdl.handle.net/10902/19148">

      1. <dc:contributor>Universidad de Cantabria</dc:contributor>

      2. <dc:creator>Prado Ortega, Elena</dc:creator>

      3. <dc:creator>Rodríguez Basalo, Augusto</dc:creator>

      4. <dc:creator>Cobo García, Adolfo</dc:creator>

      5. <dc:creator>Ríos López, María Pilar</dc:creator>

      6. <dc:creator>Sánchez Delgado, Francisco</dc:creator>

      7. <dc:date>2020-07-31</dc:date>

      8. <dc:description lang="es_ES">The relationship between 3D terrain complexity and fine-scale localization and distribution of species is poorly understood. Here we present a very fine-scale 3D reconstruction model of three zones of circalittoral rocky shelf in the Bay of Biscay. Detailed terrain variables are extracted from 3D models using a structure-from-motion (SfM) approach applied to ROTV images. Significant terrain variables that explain species location were selected using general additive models (GAMs) and micro-distribution of the species were predicted. Two models combining BPI, curvature and rugosity can explain 55% and 77% of the Ophiuroidea and Crinoidea distribution, respectively. The third model contributes to explaining the terrain variables that induce the localization of Dendrophyllia cornigera. GAM univariate models detect the terrain variables for each structural species in this third zone (Artemisina transiens, D. cornigera and Phakellia ventilabrum). To avoid the time-consuming task of manual annotation of presence, a deep-learning algorithm (YOLO v4) is proposed. This approach achieves very high reliability and low uncertainty in automatic object detection, identification and location. These new advances applied to underwater imagery (SfM and deep-learning) can resolve the very-high resolution information needed for predictive microhabitat modeling in a very complex zone.</dc:description>

      9. <dc:identifier>http://hdl.handle.net/10902/19148</dc:identifier>

      10. <dc:language>eng</dc:language>

      11. <dc:publisher>MDPI</dc:publisher>

      12. <dc:source>Remote Sensing, 2020, 12(15), 2466</dc:source>

      13. <dc:subject>Sin materia</dc:subject>

      14. <dc:subject lang="es_ES">Circalittoral rocky shelf</dc:subject>

      15. <dc:subject lang="es_ES">Underwater 3D photogrammetry</dc:subject>

      16. <dc:subject lang="es_ES">Structure-from-motion</dc:subject>

      17. <dc:subject lang="es_ES">Avilés Canyon System</dc:subject>

      18. <dc:subject lang="es_ES">Benthic habitat modeling</dc:subject>

      19. <dc:subject lang="es_ES">Deep-learning</dc:subject>

      20. <dc:subject lang="es_ES">YOLO</dc:subject>

      21. <dc:subject lang="es_ES">Annotation of underwater images</dc:subject>

      22. <dc:title lang="es_ES">3D Fine-scale terrain variables from underwater photogrammetry: a new approach to benthic microhabitat modeling in a circalittoral rocky shelf</dc:title>

      23. <dc:type>info:eu-repo/semantics/article</dc:type>

      24. <dcterms:extent>28 p.</dcterms:extent>

      25. <edm:type>TEXT</edm:type>

      </edm:ProvidedCHO>

    2. <ore:Aggregation about="http://hdl.handle.net/10902/19148#aggregation">

      1. <edm:aggregatedCHO resource="http://hdl.handle.net/10902/19148" />
      2. <edm:dataProvider>UCrea Repositorio abierto de la Universidad de Cantabria</edm:dataProvider>

      3. <edm:isShownAt resource="http://hdl.handle.net/10902/19148" />
      4. <edm:isShownBy resource="https://repositorio.unican.es/xmlui/bitstream/10902/19148/3/3DFine_scaleTerrain.pdf" />
      5. <edm:object resource="https://repositorio.unican.es/xmlui/bitstream/10902/19148/5/3DFine_scaleTerrain.pdf.jpg" />
      6. <edm:provider>Hispana</edm:provider>

      7. <edm:rights resource="http://creativecommons.org/licenses/by/4.0/" />

      </ore:Aggregation>

    3. <edm:WebResource about="https://repositorio.unican.es/xmlui/bitstream/10902/19148/3/3DFine_scaleTerrain.pdf">

      1. <dc:format>application/pdf</dc:format>

      2. <edm:rights resource="http://creativecommons.org/licenses/by/4.0/" />

      </edm:WebResource>

    </rdf:RDF>

Hispana

Portal de acceso al patrimonio digital y el agregador nacional de contenidos a Europeana.

Contacto

Accede a nuestro formulario y te contestaremos con la mayor brevedad.

Contacto

X

Tweets by Hispana_roai

Facebook

HISPANA
© Ministerio de Cultura
  • Aviso Legal