Logotipo de HISPANA
Logotipo del Ministerio de Cultura
  • ¿Qué es Hispana?
  • Búsqueda
  • Directorio de colecciones
  • Contacto
  • es
    • Español
    • Euskara
    • English
    • Galego
    • Català
    • Valencià
Está en:  › Datos de registro
Linked Open Data
#Brexit: Leave or Remain? The Role of User's Community and Diachronic Evolution on Stance Detection
Identificadores del recurso
urn:issn:1064-1246
http://hdl.handle.net/10251/170080
info:doi:10.3233/JIFS-179895
Procedencia
(RiuNet: Repositorio Institucional de la Universitat Politècnica de València)

Ficha

Título:
#Brexit: Leave or Remain? The Role of User's Community and Diachronic Evolution on Stance Detection
Tema:
Stance detection
Twitter
Brexit
NLP
Community detection
LENGUAJES Y SISTEMAS INFORMATICOS
Descripción:
[EN] Interest has grown around the classification of stance that users assume within online debates in recent years. Stance has been usually addressed by considering users posts in isolation, while social studies highlight that social communities may contribute to influence users¿ opinion. Furthermore, stance should be studied in a diachronic perspective, since it could help to shed light on users¿ opinion shift dynamics that can be recorded during the debate. We analyzed the political discussion in UK about the BREXIT referendum on Twitter, proposing a novel approach and annotation schema for stance detection, with the main aim of investigating the role of features related to social network community and diachronic stance evolution. Classification experiments show that such features provide very useful clues for detecting stance.
The work of P. Rosso was partially funded by the Spanish MICINN under the research projects MISMIS-FAKEnHATE on Misinformation and Miscommunication in social media: FAKE news and HATE speech(PGC2018-096212-B-C31) and PROMETEO/2019/121 (DeepPattern) of the Generalitat Valenciana. The work of V. Patti and G. Ruffo was partially funded by Progetto di Ateneo/CSP 2016 Immigrants, Hate and Prejudice in Social Media (S1618 L2 BOSC 01).
Lai, M.; Patti, V.; Ruffo, G.; Rosso, P. (2020). #Brexit: Leave or Remain? The Role of User's Community and Diachronic Evolution on Stance Detection. Journal of Intelligent & Fuzzy Systems. 39(2):2341-2352. https://doi.org/10.3233/JIFS-179895
2341
2352
39
2
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. doi:10.1088/1742-5468/2008/10/p10008
Deitrick, W., & Hu, W. (2013). Mutually Enhancing Community Detection and Sentiment Analysis on Twitter Networks. Journal of Data Analysis and Information Processing, 01(03), 19-29. doi:10.4236/jdaip.2013.13004
Duranti A. and Goodwin C. , Rethinking context: Language as an interactive phenomenon, Cambridge University Press, (1992).
Evans A. , Stance and identity in Twitter hashtags, Language@ Internet 13(1) (2016).
Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3-5), 75-174. doi:10.1016/j.physrep.2009.11.002
Gelman, A., & King, G. (1993). Why Are American Presidential Election Campaign Polls So Variable When Votes Are So Predictable? British Journal of Political Science, 23(4), 409-451. doi:10.1017/s0007123400006682
Gonçalves, B., Perra, N., & Vespignani, A. (2011). Modeling Users’ Activity on Twitter Networks: Validation of Dunbar’s Number. PLoS ONE, 6(8), e22656. doi:10.1371/journal.pone.0022656
González, M. C., Hidalgo, C. A., & Barabási, A.-L. (2008). Understanding individual human mobility patterns. Nature, 453(7196), 779-782. doi:10.1038/nature06958
Hernández-Castañeda, Á., Calvo, H., & Gambino, O. J. (2018). Impact of polarity in deception detection. Journal of Intelligent & Fuzzy Systems, 35(1), 549-558. doi:10.3233/jifs-169610
Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabási, A.-L., Brewer, D., … Van Alstyne, M. (2009). Computational Social Science. Science, 323(5915), 721-723. doi:10.1126/science.1167742
Mohammad, S. M., Sobhani, P., & Kiritchenko, S. (2017). Stance and Sentiment in Tweets. ACM Transactions on Internet Technology, 17(3), 1-23. doi:10.1145/3003433
Mohammad, S. M., & Turney, P. D. (2012). CROWDSOURCING A WORD-EMOTION ASSOCIATION LEXICON. Computational Intelligence, 29(3), 436-465. doi:10.1111/j.1467-8640.2012.00460.x
Pang, B., & Lee, L. (2008). Opinion Mining and Sentiment Analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1-135. doi:10.1561/1500000011
Pennebaker J.W. , Francis M.E. and Booth R.J. , Linguistic Inquiry and Word Count: LIWC 2001, Mahway: Lawrence Erlbaum Associates 71 (2001).
Sulis, E., Irazú Hernández Farías, D., Rosso, P., Patti, V., & Ruffo, G. (2016). Figurative messages and affect in Twitter: Differences between #irony, #sarcasm and #not. Knowledge-Based Systems, 108, 132-143. doi:10.1016/j.knosys.2016.05.035
Theocharis, Y., & Lowe, W. (2015). Does Facebook increase political participation? Evidence from a field experiment. Information, Communication & Society, 19(10), 1465-1486. doi:10.1080/1369118x.2015.1119871
Whissell, C. (2009). Using the Revised Dictionary of Affect in Language to Quantify the Emotional Undertones of Samples of Natural Language. Psychological Reports, 105(2), 509-521. doi:10.2466/pr0.105.2.509-521
Idioma:
English
Relación:
Journal of Intelligent & Fuzzy Systems
info:eu-repo/grantAgreement/UNITO//S1618_L2_BOSC_01/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096212-B-C31/ES/DESINFORMACION Y AGRESIVIDAD EN SOCIAL MEDIA: AGREGANDO INFORMACION Y ANALIZANDO EL LENGUAJE/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F121/ES/Deep learning for adaptative and multimodal interaction in pattern recognition/
https://doi.org/10.3233/JIFS-179895
10.1088/1742-5468/2008/10/P10008
10.4236/jdaip.2013.13004
10.1016/j.physrep.2009.11.002
10.1017/S0007123400006682
10.1371/journal.pone.0022656
10.1038/nature06958
10.3233/JIFS-169610
10.1126/science.1167742
10.1145/3003433
10.1111/j.1467-8640.2012.00460.x
10.1561/1500000011
10.1016/j.knosys.2016.05.035
10.1080/1369118X.2015.1119871
10.2466/PR0.105.2.509-521
Autor/Productor:
Lai, Mirko
Patti, Viviana
Ruffo, Giancarlo
Rosso, Paolo
Editor:
IOS Press
Otros colaboradores/productores:
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Generalitat Valenciana
Università degli Studi di Torino
Agencia Estatal de Investigación
Derechos:
http://rightsstatements.org/vocab/InC/1.0/
info:eu-repo/semantics/openAccess
Fecha:
2020
Tipo de recurso:
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion

oai_dc

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">

    1. <dc:title>#Brexit: Leave or Remain? The Role of User's Community and Diachronic Evolution on Stance Detection</dc:title>

    2. <dc:creator>Lai, Mirko</dc:creator>

    3. <dc:creator>Patti, Viviana</dc:creator>

    4. <dc:creator>Ruffo, Giancarlo</dc:creator>

    5. <dc:creator>Rosso, Paolo</dc:creator>

    6. <dc:contributor>Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació</dc:contributor>

    7. <dc:contributor>Generalitat Valenciana</dc:contributor>

    8. <dc:contributor>Università degli Studi di Torino</dc:contributor>

    9. <dc:contributor>Agencia Estatal de Investigación</dc:contributor>

    10. <dc:subject>Stance detection</dc:subject>

    11. <dc:subject>Twitter</dc:subject>

    12. <dc:subject>Brexit</dc:subject>

    13. <dc:subject>NLP</dc:subject>

    14. <dc:subject>Community detection</dc:subject>

    15. <dc:subject>LENGUAJES Y SISTEMAS INFORMATICOS</dc:subject>

    16. <dc:description>[EN] Interest has grown around the classification of stance that users assume within online debates in recent years. Stance has been usually addressed by considering users posts in isolation, while social studies highlight that social communities may contribute to influence users¿ opinion. Furthermore, stance should be studied in a diachronic perspective, since it could help to shed light on users¿ opinion shift dynamics that can be recorded during the debate. We analyzed the political discussion in UK about the BREXIT referendum on Twitter, proposing a novel approach and annotation schema for stance detection, with the main aim of investigating the role of features related to social network community and diachronic stance evolution. Classification experiments show that such features provide very useful clues for detecting stance.</dc:description>

    17. <dc:description>The work of P. Rosso was partially funded by the Spanish MICINN under the research projects MISMIS-FAKEnHATE on Misinformation and Miscommunication in social media: FAKE news and HATE speech(PGC2018-096212-B-C31) and PROMETEO/2019/121 (DeepPattern) of the Generalitat Valenciana. The work of V. Patti and G. Ruffo was partially funded by Progetto di Ateneo/CSP 2016 Immigrants, Hate and Prejudice in Social Media (S1618 L2 BOSC 01).</dc:description>

    18. <dc:description>Lai, M.; Patti, V.; Ruffo, G.; Rosso, P. (2020). #Brexit: Leave or Remain? The Role of User's Community and Diachronic Evolution on Stance Detection. Journal of Intelligent & Fuzzy Systems. 39(2):2341-2352. https://doi.org/10.3233/JIFS-179895</dc:description>

    19. <dc:description>2341</dc:description>

    20. <dc:description>2352</dc:description>

    21. <dc:description>39</dc:description>

    22. <dc:description>2</dc:description>

    23. <dc:description>Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. doi:10.1088/1742-5468/2008/10/p10008</dc:description>

    24. <dc:description>Deitrick, W., & Hu, W. (2013). Mutually Enhancing Community Detection and Sentiment Analysis on Twitter Networks. Journal of Data Analysis and Information Processing, 01(03), 19-29. doi:10.4236/jdaip.2013.13004</dc:description>

    25. <dc:description>Duranti A. and Goodwin C. , Rethinking context: Language as an interactive phenomenon, Cambridge University Press, (1992).</dc:description>

    26. <dc:description>Evans A. , Stance and identity in Twitter hashtags, Language@ Internet 13(1) (2016).</dc:description>

    27. <dc:description>Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3-5), 75-174. doi:10.1016/j.physrep.2009.11.002</dc:description>

    28. <dc:description>Gelman, A., & King, G. (1993). Why Are American Presidential Election Campaign Polls So Variable When Votes Are So Predictable? British Journal of Political Science, 23(4), 409-451. doi:10.1017/s0007123400006682</dc:description>

    29. <dc:description>Gonçalves, B., Perra, N., & Vespignani, A. (2011). Modeling Users’ Activity on Twitter Networks: Validation of Dunbar’s Number. PLoS ONE, 6(8), e22656. doi:10.1371/journal.pone.0022656</dc:description>

    30. <dc:description>González, M. C., Hidalgo, C. A., & Barabási, A.-L. (2008). Understanding individual human mobility patterns. Nature, 453(7196), 779-782. doi:10.1038/nature06958</dc:description>

    31. <dc:description>Hernández-Castañeda, Á., Calvo, H., & Gambino, O. J. (2018). Impact of polarity in deception detection. Journal of Intelligent & Fuzzy Systems, 35(1), 549-558. doi:10.3233/jifs-169610</dc:description>

    32. <dc:description>Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabási, A.-L., Brewer, D., … Van Alstyne, M. (2009). Computational Social Science. Science, 323(5915), 721-723. doi:10.1126/science.1167742</dc:description>

    33. <dc:description>Mohammad, S. M., Sobhani, P., & Kiritchenko, S. (2017). Stance and Sentiment in Tweets. ACM Transactions on Internet Technology, 17(3), 1-23. doi:10.1145/3003433</dc:description>

    34. <dc:description>Mohammad, S. M., & Turney, P. D. (2012). CROWDSOURCING A WORD-EMOTION ASSOCIATION LEXICON. Computational Intelligence, 29(3), 436-465. doi:10.1111/j.1467-8640.2012.00460.x</dc:description>

    35. <dc:description>Pang, B., & Lee, L. (2008). Opinion Mining and Sentiment Analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1-135. doi:10.1561/1500000011</dc:description>

    36. <dc:description>Pennebaker J.W. , Francis M.E. and Booth R.J. , Linguistic Inquiry and Word Count: LIWC 2001, Mahway: Lawrence Erlbaum Associates 71 (2001).</dc:description>

    37. <dc:description>Sulis, E., Irazú Hernández Farías, D., Rosso, P., Patti, V., & Ruffo, G. (2016). Figurative messages and affect in Twitter: Differences between #irony, #sarcasm and #not. Knowledge-Based Systems, 108, 132-143. doi:10.1016/j.knosys.2016.05.035</dc:description>

    38. <dc:description>Theocharis, Y., & Lowe, W. (2015). Does Facebook increase political participation? Evidence from a field experiment. Information, Communication & Society, 19(10), 1465-1486. doi:10.1080/1369118x.2015.1119871</dc:description>

    39. <dc:description>Whissell, C. (2009). Using the Revised Dictionary of Affect in Language to Quantify the Emotional Undertones of Samples of Natural Language. Psychological Reports, 105(2), 509-521. doi:10.2466/pr0.105.2.509-521</dc:description>

    40. <dc:date>2020</dc:date>

    41. <dc:type>info:eu-repo/semantics/article</dc:type>

    42. <dc:type>info:eu-repo/semantics/publishedVersion</dc:type>

    43. <dc:identifier>urn:issn:1064-1246</dc:identifier>

    44. <dc:identifier>http://hdl.handle.net/10251/170080</dc:identifier>

    45. <dc:identifier>info:doi:10.3233/JIFS-179895</dc:identifier>

    46. <dc:language>eng</dc:language>

    47. <dc:relation>Journal of Intelligent & Fuzzy Systems</dc:relation>

    48. <dc:relation>info:eu-repo/grantAgreement/UNITO//S1618_L2_BOSC_01/</dc:relation>

    49. <dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096212-B-C31/ES/DESINFORMACION Y AGRESIVIDAD EN SOCIAL MEDIA: AGREGANDO INFORMACION Y ANALIZANDO EL LENGUAJE/</dc:relation>

    50. <dc:relation>info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F121/ES/Deep learning for adaptative and multimodal interaction in pattern recognition/</dc:relation>

    51. <dc:relation>https://doi.org/10.3233/JIFS-179895</dc:relation>

    52. <dc:relation>10.1088/1742-5468/2008/10/P10008</dc:relation>

    53. <dc:relation>10.4236/jdaip.2013.13004</dc:relation>

    54. <dc:relation>10.1016/j.physrep.2009.11.002</dc:relation>

    55. <dc:relation>10.1017/S0007123400006682</dc:relation>

    56. <dc:relation>10.1371/journal.pone.0022656</dc:relation>

    57. <dc:relation>10.1038/nature06958</dc:relation>

    58. <dc:relation>10.3233/JIFS-169610</dc:relation>

    59. <dc:relation>10.1126/science.1167742</dc:relation>

    60. <dc:relation>10.1145/3003433</dc:relation>

    61. <dc:relation>10.1111/j.1467-8640.2012.00460.x</dc:relation>

    62. <dc:relation>10.1561/1500000011</dc:relation>

    63. <dc:relation>10.1016/j.knosys.2016.05.035</dc:relation>

    64. <dc:relation>10.1080/1369118X.2015.1119871</dc:relation>

    65. <dc:relation>10.2466/PR0.105.2.509-521</dc:relation>

    66. <dc:rights>http://rightsstatements.org/vocab/InC/1.0/</dc:rights>

    67. <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>

    68. <dc:publisher>IOS Press</dc:publisher>

    </oai_dc:dc>

edm

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <rdf:RDF schemaLocation="http://www.w3.org/1999/02/22-rdf-syntax-ns# http://www.europeana.eu/schemas/edm">

    1. <edm:ProvidedCHO about="http://hdl.handle.net/10251/170080">

      1. <dc:title>#Brexit: Leave or Remain? The Role of User's Community and Diachronic Evolution on Stance Detection</dc:title>

      2. <dc:creator>Lai, Mirko</dc:creator>

      3. <dc:creator>Patti, Viviana</dc:creator>

      4. <dc:creator>Ruffo, Giancarlo</dc:creator>

      5. <dc:creator>Rosso, Paolo</dc:creator>

      6. <dc:contributor>Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació</dc:contributor>

      7. <dc:contributor>Generalitat Valenciana</dc:contributor>

      8. <dc:contributor>Università degli Studi di Torino</dc:contributor>

      9. <dc:contributor>Agencia Estatal de Investigación</dc:contributor>

      10. <dc:subject>Stance detection</dc:subject>

      11. <dc:subject>Twitter</dc:subject>

      12. <dc:subject>Brexit</dc:subject>

      13. <dc:subject>NLP</dc:subject>

      14. <dc:subject>Community detection</dc:subject>

      15. <dc:subject>LENGUAJES Y SISTEMAS INFORMATICOS</dc:subject>

      16. <dc:description>[EN] Interest has grown around the classification of stance that users assume within online debates in recent years. Stance has been usually addressed by considering users posts in isolation, while social studies highlight that social communities may contribute to influence users¿ opinion. Furthermore, stance should be studied in a diachronic perspective, since it could help to shed light on users¿ opinion shift dynamics that can be recorded during the debate. We analyzed the political discussion in UK about the BREXIT referendum on Twitter, proposing a novel approach and annotation schema for stance detection, with the main aim of investigating the role of features related to social network community and diachronic stance evolution. Classification experiments show that such features provide very useful clues for detecting stance.</dc:description>

      17. <dcterms:issued>2020</dcterms:issued>

      18. <dc:type>info:eu-repo/semantics/article</dc:type>

      19. <dc:identifier>http://hdl.handle.net/10251/170080</dc:identifier>

      20. <dc:identifier>info:doi:10.3233/JIFS-179895</dc:identifier>

      21. <dc:language>eng</dc:language>

      22. <dcterms:isPartOf>Journal of Intelligent & Fuzzy Systems</dcterms:isPartOf>

      23. <dc:publisher>IOS Press</dc:publisher>

      24. <edm:type>TEXT</edm:type>

      </edm:ProvidedCHO>

    2. <ore:Aggregation about="http://hdl.handle.net/10251/170080">

      1. <edm:aggregatedCHO resource="http://hdl.handle.net/10251/170080" />
      2. <edm:dataProvider>Riunet (Universitat Politècnica de València)</edm:dataProvider>

      3. <edm:provider>Hispana</edm:provider>

      4. <edm:rights resource="http://rightsstatements.org/vocab/InC/1.0/" />
      5. <edm:isShownAt resource="http://hdl.handle.net/10251/170080" />
      6. <edm:isShownBy resource="https://riunet.upv.es/bitstream/10251/170080/7/LaiPattiRuffo%20-%20Brexit%20Leave%20or%20Remain%20The%20Role%20of%20Users%20Community%20and%20Diachronic%20Evolution%20on%20St....pdf" />
      7. <edm:hasView resource="https://riunet.upv.es/bitstream/10251/170080/2/JIFS-Lai-editorial.pdf" />
      8. <edm:object resource="https://riunet.upv.es/bitstream/10251/170080/12/LaiPattiRuffo%20-%20Brexit%20Leave%20or%20Remain%20The%20Role%20of%20Users%20Community%20and%20Diachronic%20Evolution%20on%20St....pdf.jpg" />

      </ore:Aggregation>

    3. <edm:WebResource about="https://riunet.upv.es/bitstream/10251/170080/7/LaiPattiRuffo%20-%20Brexit%20Leave%20or%20Remain%20The%20Role%20of%20Users%20Community%20and%20Diachronic%20Evolution%20on%20St....pdf">

      1. <edm:rights resource="http://rightsstatements.org/vocab/InC/1.0/" />

      </edm:WebResource>

    4. <edm:WebResource about="https://riunet.upv.es/bitstream/10251/170080/2/JIFS-Lai-editorial.pdf">

      1. <edm:rights resource="http://rightsstatements.org/vocab/InC/1.0/" />

      </edm:WebResource>

    5. <edm:WebResource about="https://riunet.upv.es/bitstream/10251/170080/12/LaiPattiRuffo%20-%20Brexit%20Leave%20or%20Remain%20The%20Role%20of%20Users%20Community%20and%20Diachronic%20Evolution%20on%20St....pdf.jpg">

      1. <edm:rights resource="http://rightsstatements.org/vocab/InC/1.0/" />

      </edm:WebResource>

    </rdf:RDF>

ese

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <europeana:record schemaLocation="http://www.europeana.eu/schemas/ese/ http://www.europeana.eu/schemas/ese/ESE-V3.4.xsd">

    1. <dc:title>#Brexit: Leave or Remain? The Role of User's Community and Diachronic Evolution on Stance Detection</dc:title>

    2. <dc:creator>Lai, Mirko</dc:creator>

    3. <dc:creator>Patti, Viviana</dc:creator>

    4. <dc:creator>Ruffo, Giancarlo</dc:creator>

    5. <dc:creator>Rosso, Paolo</dc:creator>

    6. <dc:contributor>Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació</dc:contributor>

    7. <dc:contributor>Generalitat Valenciana</dc:contributor>

    8. <dc:contributor>Università degli Studi di Torino</dc:contributor>

    9. <dc:contributor>Agencia Estatal de Investigación</dc:contributor>

    10. <dc:subject>Stance detection</dc:subject>

    11. <dc:subject>Twitter</dc:subject>

    12. <dc:subject>Brexit</dc:subject>

    13. <dc:subject>NLP</dc:subject>

    14. <dc:subject>Community detection</dc:subject>

    15. <dc:subject>LENGUAJES Y SISTEMAS INFORMATICOS</dc:subject>

    16. <dc:description>[EN] Interest has grown around the classification of stance that users assume within online debates in recent years. Stance has been usually addressed by considering users posts in isolation, while social studies highlight that social communities may contribute to influence users¿ opinion. Furthermore, stance should be studied in a diachronic perspective, since it could help to shed light on users¿ opinion shift dynamics that can be recorded during the debate. We analyzed the political discussion in UK about the BREXIT referendum on Twitter, proposing a novel approach and annotation schema for stance detection, with the main aim of investigating the role of features related to social network community and diachronic stance evolution. Classification experiments show that such features provide very useful clues for detecting stance.</dc:description>

    17. <dcterms:issued>2020</dcterms:issued>

    18. <dc:type>info:eu-repo/semantics/article</dc:type>

    19. <dc:identifier>urn:issn:1064-1246</dc:identifier>

    20. <dc:identifier>http://hdl.handle.net/10251/170080</dc:identifier>

    21. <dc:identifier>info:doi:10.3233/JIFS-179895</dc:identifier>

    22. <dc:language>eng</dc:language>

    23. <dc:rights>http://rightsstatements.org/vocab/InC/1.0/</dc:rights>

    24. <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>

    25. <dc:publisher>IOS Press</dc:publisher>

    26. <europeana:object>https://riunet.upv.es/bitstream/10251/170080/12/LaiPattiRuffo - Brexit Leave or Remain The Role of Users Community and Diachronic Evolution on St....pdf.jpg</europeana:object>

    27. <europeana:provider>Hispana</europeana:provider>

    28. <europeana:type>TEXT</europeana:type>

    29. <europeana:rights>http://www.europeana.eu/rights/rr-f/</europeana:rights>

    30. <europeana:dataProvider>Universitat Politècnica de València</europeana:dataProvider>

    31. <europeana:isShownBy>https://riunet.upv.es/bitstream/10251/170080/7/LaiPattiRuffo - Brexit Leave or Remain The Role of Users Community and Diachronic Evolution on St....pdf</europeana:isShownBy>

    32. <europeana:isShownAt>http://hdl.handle.net/10251/170080</europeana:isShownAt>

    </europeana:record>

Hispana

Portal de acceso al patrimonio digital y el agregador nacional de contenidos a Europeana.

Contacto

Accede a nuestro formulario y te contestaremos con la mayor brevedad.

Contacto

X

Tweets by Hispana_roai

Facebook

HISPANA
© Ministerio de Cultura
  • Aviso Legal