Logotipo de HISPANA
Logotipo del Ministerio de Cultura
  • WHAT IS HISPANA?
  • Search
  • DIRECTORY OF COLLECTIONS
  • Contact
  • en
    • Español
    • Euskara
    • English
    • Galego
    • Català
    • Valencià
Está en:  › Record data
Linked Open Data
10- to 19.5-GHz microwave receiver of an electro-optical interferometer for radio astronomy
Identificadores del recurso
2329-4221
2329-4124
ESP2015-70646-C2-2-R
http://hdl.handle.net/10902/17213
10.1117/1.JATIS.5.3.035007
Origin
(Repositorio Abierto de la Universidad de Cantabria)

File

Title:
10- to 19.5-GHz microwave receiver of an electro-optical interferometer for radio astronomy
Tema:
Interferometer
Cosmic microwave background
Stokes parameters
Radio astronomy
Polarimeter
Description:
This document describes the analysis, design, and prototype test results of the microwave section of a 10- to 19.5-GHz interferometer, aimed at obtaining polarization data of cosmic microwave background (CMB) radiation from the sky. First, receiver analysis is thoroughly assessed to study the contribution of each subsystem when obtaining the Stokes parameters of an input signal. Then, the receiver design is detailed starting from the front-end module, which works at cryogenic temperature, composed of a set of passive components: feedhorn, orthomode transducer, and polarizer, together with active components, such as very low-noise amplifiers. The back-end module (BEM) is directly connected, working at room temperature for further amplification, phase switching, and correlation of the signals. Moreover, the whole frequency band is split into two sub-bands (10 to 14 GHz and 16 to 20 GHz) using a high selective diplexer in the BEM in order to reject radiofrequency interferences. Phase switches allow phase difference steps of 5.625 deg, which modulate the correlated outputs to reduce systematic effects in the postdetection signal processing. Finally, measurements of all the subsystems comprising the microwave section of the receiver as well as the characterization of the complete microwave receiver are presented. The obtained results demonstrate successful performance of the microwave receiver that, together with an electro-optical correlator and a near-infrared camera, comprises the interferometer. Moreover, synthesized images corresponding to combinations of the Stokes parameters can be obtained with the whole system.
The authors would like to thank the Spanish Ministry of Economy, Industry, and Competitiveness for financial support provided through the grant ESP2015-70646-C2-2-R. The authors thank Eva Cuerno for her assistance during the assembly of the circuits.
Source:
Journal of Astronomical Telescopes, Instruments, and Systems, 2019, 5(3), 035007
Idioma:
English
Relation:
https://doi.org/10.1117/1.JATIS.5.3.035007
Autor/Productor:
Aja Abelán, Beatriz
Fuente Rodríguez, Luisa María de la
Artal Latorre, Eduardo
Villa Benito, Enrique
Cano de Diego, Juan Luis
Mediavilla Sánchez, Ángel
Publisher:
SPIE
Otros colaboradores/productores:
Universidad de Cantabria
Rights:
© 2019 Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
http://creativecommons.org/licenses/by/4.0/
openAccess
Date:
2019-11-08T08:46:40Z
2019-08-16
Tipo de recurso:
info:eu-repo/semantics/article
publishedVersion

oai_dc

Download XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">

    1. <dc:title>10- to 19.5-GHz microwave receiver of an electro-optical interferometer for radio astronomy</dc:title>

    2. <dc:creator>Aja Abelán, Beatriz</dc:creator>

    3. <dc:creator>Fuente Rodríguez, Luisa María de la</dc:creator>

    4. <dc:creator>Artal Latorre, Eduardo</dc:creator>

    5. <dc:creator>Villa Benito, Enrique</dc:creator>

    6. <dc:creator>Cano de Diego, Juan Luis</dc:creator>

    7. <dc:creator>Mediavilla Sánchez, Ángel</dc:creator>

    8. <dc:contributor>Universidad de Cantabria</dc:contributor>

    9. <dc:subject>Interferometer</dc:subject>

    10. <dc:subject>Cosmic microwave background</dc:subject>

    11. <dc:subject>Stokes parameters</dc:subject>

    12. <dc:subject>Radio astronomy</dc:subject>

    13. <dc:subject>Polarimeter</dc:subject>

    14. <dc:description>This document describes the analysis, design, and prototype test results of the microwave section of a 10- to 19.5-GHz interferometer, aimed at obtaining polarization data of cosmic microwave background (CMB) radiation from the sky. First, receiver analysis is thoroughly assessed to study the contribution of each subsystem when obtaining the Stokes parameters of an input signal. Then, the receiver design is detailed starting from the front-end module, which works at cryogenic temperature, composed of a set of passive components: feedhorn, orthomode transducer, and polarizer, together with active components, such as very low-noise amplifiers. The back-end module (BEM) is directly connected, working at room temperature for further amplification, phase switching, and correlation of the signals. Moreover, the whole frequency band is split into two sub-bands (10 to 14 GHz and 16 to 20 GHz) using a high selective diplexer in the BEM in order to reject radiofrequency interferences. Phase switches allow phase difference steps of 5.625 deg, which modulate the correlated outputs to reduce systematic effects in the postdetection signal processing. Finally, measurements of all the subsystems comprising the microwave section of the receiver as well as the characterization of the complete microwave receiver are presented. The obtained results demonstrate successful performance of the microwave receiver that, together with an electro-optical correlator and a near-infrared camera, comprises the interferometer. Moreover, synthesized images corresponding to combinations of the Stokes parameters can be obtained with the whole system.</dc:description>

    15. <dc:description>The authors would like to thank the Spanish Ministry of Economy, Industry, and Competitiveness for financial support provided through the grant ESP2015-70646-C2-2-R. The authors thank Eva Cuerno for her assistance during the assembly of the circuits.</dc:description>

    16. <dc:date>2019-11-08T08:46:40Z</dc:date>

    17. <dc:date>2019-11-08T08:46:40Z</dc:date>

    18. <dc:date>2019-08-16</dc:date>

    19. <dc:type>info:eu-repo/semantics/article</dc:type>

    20. <dc:type>publishedVersion</dc:type>

    21. <dc:identifier>2329-4221</dc:identifier>

    22. <dc:identifier>2329-4124</dc:identifier>

    23. <dc:identifier>ESP2015-70646-C2-2-R</dc:identifier>

    24. <dc:identifier>http://hdl.handle.net/10902/17213</dc:identifier>

    25. <dc:identifier>10.1117/1.JATIS.5.3.035007</dc:identifier>

    26. <dc:language>eng</dc:language>

    27. <dc:relation>https://doi.org/10.1117/1.JATIS.5.3.035007</dc:relation>

    28. <dc:rights>© 2019 Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.</dc:rights>

    29. <dc:rights>http://creativecommons.org/licenses/by/4.0/</dc:rights>

    30. <dc:rights>openAccess</dc:rights>

    31. <dc:publisher>SPIE</dc:publisher>

    32. <dc:source>Journal of Astronomical Telescopes, Instruments, and Systems, 2019, 5(3), 035007</dc:source>

    </oai_dc:dc>

edm

Download XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <rdf:RDF schemaLocation="http://www.w3.org/1999/02/22-rdf-syntax-ns# http://www.europeana.eu/schemas/edm/EDM.xsd">

    1. <edm:ProvidedCHO about="http://hdl.handle.net/10902/17213">

      1. <dc:contributor>Universidad de Cantabria</dc:contributor>

      2. <dc:creator>Aja Abelán, Beatriz</dc:creator>

      3. <dc:creator>Fuente Rodríguez, Luisa María de la</dc:creator>

      4. <dc:creator>Artal Latorre, Eduardo</dc:creator>

      5. <dc:creator>Villa Benito, Enrique</dc:creator>

      6. <dc:creator>Cano de Diego, Juan Luis</dc:creator>

      7. <dc:creator>Mediavilla Sánchez, Ángel</dc:creator>

      8. <dc:date>2019-08-16</dc:date>

      9. <dc:description lang="es_ES">This document describes the analysis, design, and prototype test results of the microwave section of a 10- to 19.5-GHz interferometer, aimed at obtaining polarization data of cosmic microwave background (CMB) radiation from the sky. First, receiver analysis is thoroughly assessed to study the contribution of each subsystem when obtaining the Stokes parameters of an input signal. Then, the receiver design is detailed starting from the front-end module, which works at cryogenic temperature, composed of a set of passive components: feedhorn, orthomode transducer, and polarizer, together with active components, such as very low-noise amplifiers. The back-end module (BEM) is directly connected, working at room temperature for further amplification, phase switching, and correlation of the signals. Moreover, the whole frequency band is split into two sub-bands (10 to 14 GHz and 16 to 20 GHz) using a high selective diplexer in the BEM in order to reject radiofrequency interferences. Phase switches allow phase difference steps of 5.625 deg, which modulate the correlated outputs to reduce systematic effects in the postdetection signal processing. Finally, measurements of all the subsystems comprising the microwave section of the receiver as well as the characterization of the complete microwave receiver are presented. The obtained results demonstrate successful performance of the microwave receiver that, together with an electro-optical correlator and a near-infrared camera, comprises the interferometer. Moreover, synthesized images corresponding to combinations of the Stokes parameters can be obtained with the whole system.</dc:description>

      10. <dc:identifier>http://hdl.handle.net/10902/17213</dc:identifier>

      11. <dc:language>eng</dc:language>

      12. <dc:publisher>SPIE</dc:publisher>

      13. <dc:source>Journal of Astronomical Telescopes, Instruments, and Systems, 2019, 5(3), 035007</dc:source>

      14. <dc:subject>Sin materia</dc:subject>

      15. <dc:subject lang="es_ES">Interferometer</dc:subject>

      16. <dc:subject lang="es_ES">Cosmic microwave background</dc:subject>

      17. <dc:subject lang="es_ES">Stokes parameters</dc:subject>

      18. <dc:subject lang="es_ES">Radio astronomy</dc:subject>

      19. <dc:subject lang="es_ES">Polarimeter</dc:subject>

      20. <dc:title lang="es_ES">10- to 19.5-GHz microwave receiver of an electro-optical interferometer for radio astronomy</dc:title>

      21. <dc:type>info:eu-repo/semantics/article</dc:type>

      22. <dcterms:extent>16 p.</dcterms:extent>

      23. <edm:type>TEXT</edm:type>

      </edm:ProvidedCHO>

    2. <ore:Aggregation about="http://hdl.handle.net/10902/17213#aggregation">

      1. <edm:aggregatedCHO resource="http://hdl.handle.net/10902/17213" />
      2. <edm:dataProvider>UCrea Repositorio abierto de la Universidad de Cantabria</edm:dataProvider>

      3. <edm:isShownAt resource="http://hdl.handle.net/10902/17213" />
      4. <edm:isShownBy resource="https://repositorio.unican.es/xmlui/bitstream/10902/17213/3/10-to19.5-GHzMicrowaveReceiver.pdf" />
      5. <edm:object resource="https://repositorio.unican.es/xmlui/bitstream/10902/17213/5/10-to19.5-GHzMicrowaveReceiver.pdf.jpg" />
      6. <edm:provider>Hispana</edm:provider>

      7. <edm:rights resource="http://creativecommons.org/licenses/by/4.0/" />

      </ore:Aggregation>

    3. <edm:WebResource about="https://repositorio.unican.es/xmlui/bitstream/10902/17213/3/10-to19.5-GHzMicrowaveReceiver.pdf">

      1. <dc:format>application/pdf</dc:format>

      2. <edm:rights resource="http://creativecommons.org/licenses/by/4.0/" />

      </edm:WebResource>

    </rdf:RDF>

Hispana

Access portal to digital heritage and the national content aggregator to Europeana

Contact

Access our form and we will answer you as soon as possible

Contact

X

Tweets by Hispana_roai

Facebook

HISPANA
© Ministry of Culture
  • Legal notice