<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>A computational intelligence analysis of G proteincoupled receptor sequinces for pharmacoproteomic applications</dc:title>
<dc:creator>Cárdenas Domínguez, Martha Ivón</dc:creator>
<dc:contributor>Vellido, Alfredo</dc:contributor>
<dc:contributor>Giraldo, Jesús</dc:contributor>
<dc:contributor>Universitat Politècnica de Catalunya. Departament de Ciències de la Computació</dc:contributor>
<dc:subject>Àrees temàtiques de la UPC::Informàtica</dc:subject>
<dc:subject>004</dc:subject>
<dc:description>Arguably, drug research has contributed more to the progress of medicine during the past decades than any other scientific factor. One of the main areas of drug research is related to the analysis of proteins. The world of pharmacology is becoming increasingly dependent on the advances in the fields of genomics and proteomics. This dependency brings about the challenge of finding robust methods to analyze the complex data they generate. Such challenge invites us to go one step further than traditional statistics and resort to approaches under the conceptual umbrella of artificial intelligence, including machine learning (ML), statistical pattern recognition and soft computing methods. Sound statistical principles are essential to trust the evidence base built through the use of such approaches. Statistical ML methods are thus at the core of the current thesis. More than 50% of drugs currently available target only four key protein families, from which almost a 30% correspond to the G Protein-Coupled Receptors (GPCR) superfamily. This superfamily regulates the function of most cells in living organisms and is at the centre of the investigations reported in the current thesis. No much is known about the 3D structure of these proteins. Fortunately, plenty of information regarding their amino acid sequences is readily available. The automatic grouping and classification of GPCRs into families and these into subtypes based on sequence analysis may significantly contribute to ascertain the pharmaceutically relevant properties of this protein superfamily. There is no biologically-relevant manner of representing the symbolic sequences describing proteins using real-valued vectors. This does not preclude the possibility of analyzing them using principled methods. These may come, amongst others, from the field of statisticalML. Particularly, kernel methods can be used to this purpose. Moreover, the visualization of high-dimensional protein sequence data can be a key exploratory tool for finding meaningful information that might be obscured by their intrinsic complexity. That is why the objective of the research described in this thesis is twofold: first, the design of adequate visualization-oriented artificial intelligence-based methods for the analysis of GPCR sequential data, and second, the application of the developed methods in relevant pharmacoproteomic problems such as GPCR subtyping and protein alignment-free analysis.</dc:description>
<dc:description>Se podría decir que la investigación farmacológica ha desempeñado un papel predominante en el avance de la medicina a lo largo de las últimas décadas. Una de las áreas principales de investigación farmacológica es la relacionada con el estudio de proteínas. La farmacología depende cada vez más de los avances en genómica y proteómica, lo que conlleva el reto de diseñar métodos robustos para el análisis de los datos complejos que generan. Tal reto nos incita a ir más allá de la estadística tradicional para recurrir a enfoques dentro del campo de la inteligencia artificial, incluyendo el aprendizaje automático y el reconocimiento de patrones estadístico, entre otros. El uso de principios sólidos de teoría estadística es esencial para confiar en la base de evidencia obtenida mediante estos enfoques. Los métodos de aprendizaje automático estadístico son uno de los fundamentos de esta tesis. Más del 50% de los fármacos en uso hoy en día tienen como ¿diana¿ apenas cuatro familias clave de proteínas, de las que un 30% corresponden a la super-familia de los G-Protein Coupled Receptors (GPCR). Los GPCR regulan la funcionalidad de la mayoría de las células y son el objetivo central de la tesis. Se desconoce la estructura 3D de la mayoría de estas proteínas, pero, en cambio, hay mucha información disponible de sus secuencias de amino ácidos. El agrupamiento y clasificación automáticos de los GPCR en familias, y de éstas a su vez en subtipos, en base a sus secuencias, pueden contribuir de forma significativa a dilucidar aquellas de sus propiedades de interés farmacológico. No hay forma biológicamente relevante de representar las secuencias simbólicas de las proteínas mediante vectores reales. Esto no impide que se puedan analizar con métodos adecuados. Entre estos se cuentan las técnicas provenientes del aprendizaje automático estadístico y, en particular, los métodos kernel. Por otro lado, la visualización de secuencias de proteínas de alta dimensionalidad puede ser una herramienta clave para la exploración y análisis de las mismas. Es por ello que el objetivo central de la investigación descrita en esta tesis se puede desdoblar en dos grandes líneas: primero, el diseño de métodos centrados en la visualización y basados en la inteligencia artificial para el análisis de los datos secuenciales correspondientes a los GPCRs y, segundo, la aplicación de los métodos desarrollados a problemas de farmacoproteómica tales como la subtipificación de GPCRs y el análisis de proteinas no-alineadas.</dc:description>
<dc:date>2017-12-19T14:06:19Z</dc:date>
<dc:date>2017-12-19T14:06:19Z</dc:date>
<dc:date>2017-09-18</dc:date>
<dc:type>info:eu-repo/semantics/doctoralThesis</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:identifier>http://hdl.handle.net/10803/458380</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:format>211 p.</dc:format>
<dc:format>application/pdf</dc:format>
<dc:format>application/pdf</dc:format>
<dc:publisher>Universitat Politècnica de Catalunya</dc:publisher>
<dc:source>TDX (Tesis Doctorals en Xarxa)</dc:source>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<dim:dim schemaLocation="http://www.dspace.org/xmlns/dspace/dim http://www.dspace.org/schema/dim.xsd">
<dim:field element="contributor" mdschema="dc">Universitat Politècnica de Catalunya. Departament de Ciències de la Computació</dim:field>
<dim:field authority="6aa99a35-aa00-4f4f-9794-afd4de849363" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Cárdenas Domínguez, Martha Ivón</dim:field>
<dim:field element="contributor" lang="en_US" mdschema="dc" qualifier="authoremail">marthaivon@yahoo.es</dim:field>
<dim:field element="contributor" lang="en_US" mdschema="dc" qualifier="authoremailshow">false</dim:field>
<dim:field authority="57ff1670-ce4d-4299-b550-41bb359d83c1" confidence="-1" element="contributor" mdschema="dc" qualifier="director">Vellido, Alfredo</dim:field>
<dim:field authority="447b82e3-01d7-454e-9593-065455226021" confidence="-1" element="contributor" mdschema="dc" qualifier="codirector">Giraldo, Jesús</dim:field>
<dim:field element="contributor" lang="en_US" mdschema="dc" qualifier="authorsendemail">true</dim:field>
<dim:field element="date" mdschema="dc" qualifier="accessioned">2017-12-19T14:06:19Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="available">2017-12-19T14:06:19Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="issued">2017-09-18</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="uri">http://hdl.handle.net/10803/458380</dim:field>
<dim:field element="description" lang="en_US" mdschema="dc" qualifier="abstract">Arguably, drug research has contributed more to the progress of medicine during the past decades than any other scientific factor. One of the main areas of drug research is related to the analysis of proteins. The world of pharmacology is becoming increasingly dependent on the advances in the fields of genomics and proteomics. This dependency brings about the challenge of finding robust methods to analyze the complex data they generate. Such challenge invites us to go one step further than traditional statistics and resort to approaches under the conceptual umbrella of artificial intelligence, including machine learning (ML), statistical pattern recognition and soft computing methods. Sound statistical principles are essential to trust the evidence base built through the use of such approaches. Statistical ML methods are thus at the core of the current thesis. More than 50% of drugs currently available target only four key protein families, from which almost a 30% correspond to the G Protein-Coupled Receptors (GPCR) superfamily. This superfamily regulates the function of most cells in living organisms and is at the centre of the investigations reported in the current thesis. No much is known about the 3D structure of these proteins. Fortunately, plenty of information regarding their amino acid sequences is readily available. The automatic grouping and classification of GPCRs into families and these into subtypes based on sequence analysis may significantly contribute to ascertain the pharmaceutically relevant properties of this protein superfamily. There is no biologically-relevant manner of representing the symbolic sequences describing proteins using real-valued vectors. This does not preclude the possibility of analyzing them using principled methods. These may come, amongst others, from the field of statisticalML. Particularly, kernel methods can be used to this purpose. Moreover, the visualization of high-dimensional protein sequence data can be a key exploratory tool for finding meaningful information that might be obscured by their intrinsic complexity. That is why the objective of the research described in this thesis is twofold: first, the design of adequate visualization-oriented artificial intelligence-based methods for the analysis of GPCR sequential data, and second, the application of the developed methods in relevant pharmacoproteomic problems such as GPCR subtyping and protein alignment-free analysis.</dim:field>
<dim:field element="description" lang="en_US" mdschema="dc" qualifier="abstract">Se podría decir que la investigación farmacológica ha desempeñado un papel predominante en el avance de la medicina a lo largo de las últimas décadas. Una de las áreas principales de investigación farmacológica es la relacionada con el estudio de proteínas. La farmacología depende cada vez más de los avances en genómica y proteómica, lo que conlleva el reto de diseñar métodos robustos para el análisis de los datos complejos que generan. Tal reto nos incita a ir más allá de la estadística tradicional para recurrir a enfoques dentro del campo de la inteligencia artificial, incluyendo el aprendizaje automático y el reconocimiento de patrones estadístico, entre otros. El uso de principios sólidos de teoría estadística es esencial para confiar en la base de evidencia obtenida mediante estos enfoques. Los métodos de aprendizaje automático estadístico son uno de los fundamentos de esta tesis. Más del 50% de los fármacos en uso hoy en día tienen como ¿diana¿ apenas cuatro familias clave de proteínas, de las que un 30% corresponden a la super-familia de los G-Protein Coupled Receptors (GPCR). Los GPCR regulan la funcionalidad de la mayoría de las células y son el objetivo central de la tesis. Se desconoce la estructura 3D de la mayoría de estas proteínas, pero, en cambio, hay mucha información disponible de sus secuencias de amino ácidos. El agrupamiento y clasificación automáticos de los GPCR en familias, y de éstas a su vez en subtipos, en base a sus secuencias, pueden contribuir de forma significativa a dilucidar aquellas de sus propiedades de interés farmacológico. No hay forma biológicamente relevante de representar las secuencias simbólicas de las proteínas mediante vectores reales. Esto no impide que se puedan analizar con métodos adecuados. Entre estos se cuentan las técnicas provenientes del aprendizaje automático estadístico y, en particular, los métodos kernel. Por otro lado, la visualización de secuencias de proteínas de alta dimensionalidad puede ser una herramienta clave para la exploración y análisis de las mismas. Es por ello que el objetivo central de la investigación descrita en esta tesis se puede desdoblar en dos grandes líneas: primero, el diseño de métodos centrados en la visualización y basados en la inteligencia artificial para el análisis de los datos secuenciales correspondientes a los GPCRs y, segundo, la aplicación de los métodos desarrollados a problemas de farmacoproteómica tales como la subtipificación de GPCRs y el análisis de proteinas no-alineadas.</dim:field>
<dim:field element="format" lang="en_US" mdschema="dc" qualifier="extent">211 p.</dim:field>
<dim:field element="format" mdschema="dc" qualifier="mimetype">application/pdf</dim:field>
<dim:field element="language" lang="en_US" mdschema="dc" qualifier="iso">eng</dim:field>
<dim:field element="publisher" mdschema="dc">Universitat Politècnica de Catalunya</dim:field>
<dim:field element="rights" mdschema="dc" qualifier="license">ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</dim:field>
<dim:field element="rights" mdschema="dc" qualifier="accessLevel">info:eu-repo/semantics/openAccess</dim:field>
<dim:field element="source" mdschema="dc">TDX (Tesis Doctorals en Xarxa)</dim:field>
<dim:field element="subject" lang="en_US" mdschema="dc" qualifier="other">Àrees temàtiques de la UPC::Informàtica</dim:field>
<dim:field element="subject" lang="en_US" mdschema="dc" qualifier="udc">004</dim:field>
<dim:field element="title" lang="en_US" mdschema="dc">A computational intelligence analysis of G proteincoupled receptor sequinces for pharmacoproteomic applications</dim:field>
<dim:field element="type" mdschema="dc">info:eu-repo/semantics/doctoralThesis</dim:field>
<dim:field element="type" mdschema="dc">info:eu-repo/semantics/publishedVersion</dim:field>
<dim:field element="embargo" lang="en_US" mdschema="dc" qualifier="terms">cap</dim:field>
</dim:dim>
<?xml version="1.0" encoding="UTF-8" ?>
<thesis schemaLocation="http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd">
<title>A computational intelligence analysis of G proteincoupled receptor sequinces for pharmacoproteomic applications</title>
<creator>Cárdenas Domínguez, Martha Ivón</creator>
<contributor>marthaivon@yahoo.es</contributor>
<contributor>false</contributor>
<contributor>Vellido, Alfredo</contributor>
<contributor>Giraldo, Jesús</contributor>
<contributor>true</contributor>
<description>Arguably, drug research has contributed more to the progress of medicine during the past decades than any other scientific factor. One of the main areas of drug research is related to the analysis of proteins. The world of pharmacology is becoming increasingly dependent on the advances in the fields of genomics and proteomics. This dependency brings about the challenge of finding robust methods to analyze the complex data they generate. Such challenge invites us to go one step further than traditional statistics and resort to approaches under the conceptual umbrella of artificial intelligence, including machine learning (ML), statistical pattern recognition and soft computing methods. Sound statistical principles are essential to trust the evidence base built through the use of such approaches. Statistical ML methods are thus at the core of the current thesis. More than 50% of drugs currently available target only four key protein families, from which almost a 30% correspond to the G Protein-Coupled Receptors (GPCR) superfamily. This superfamily regulates the function of most cells in living organisms and is at the centre of the investigations reported in the current thesis. No much is known about the 3D structure of these proteins. Fortunately, plenty of information regarding their amino acid sequences is readily available. The automatic grouping and classification of GPCRs into families and these into subtypes based on sequence analysis may significantly contribute to ascertain the pharmaceutically relevant properties of this protein superfamily. There is no biologically-relevant manner of representing the symbolic sequences describing proteins using real-valued vectors. This does not preclude the possibility of analyzing them using principled methods. These may come, amongst others, from the field of statisticalML. Particularly, kernel methods can be used to this purpose. Moreover, the visualization of high-dimensional protein sequence data can be a key exploratory tool for finding meaningful information that might be obscured by their intrinsic complexity. That is why the objective of the research described in this thesis is twofold: first, the design of adequate visualization-oriented artificial intelligence-based methods for the analysis of GPCR sequential data, and second, the application of the developed methods in relevant pharmacoproteomic problems such as GPCR subtyping and protein alignment-free analysis.</description>
<description>Se podría decir que la investigación farmacológica ha desempeñado un papel predominante en el avance de la medicina a lo largo de las últimas décadas. Una de las áreas principales de investigación farmacológica es la relacionada con el estudio de proteínas. La farmacología depende cada vez más de los avances en genómica y proteómica, lo que conlleva el reto de diseñar métodos robustos para el análisis de los datos complejos que generan. Tal reto nos incita a ir más allá de la estadística tradicional para recurrir a enfoques dentro del campo de la inteligencia artificial, incluyendo el aprendizaje automático y el reconocimiento de patrones estadístico, entre otros. El uso de principios sólidos de teoría estadística es esencial para confiar en la base de evidencia obtenida mediante estos enfoques. Los métodos de aprendizaje automático estadístico son uno de los fundamentos de esta tesis. Más del 50% de los fármacos en uso hoy en día tienen como ¿diana¿ apenas cuatro familias clave de proteínas, de las que un 30% corresponden a la super-familia de los G-Protein Coupled Receptors (GPCR). Los GPCR regulan la funcionalidad de la mayoría de las células y son el objetivo central de la tesis. Se desconoce la estructura 3D de la mayoría de estas proteínas, pero, en cambio, hay mucha información disponible de sus secuencias de amino ácidos. El agrupamiento y clasificación automáticos de los GPCR en familias, y de éstas a su vez en subtipos, en base a sus secuencias, pueden contribuir de forma significativa a dilucidar aquellas de sus propiedades de interés farmacológico. No hay forma biológicamente relevante de representar las secuencias simbólicas de las proteínas mediante vectores reales. Esto no impide que se puedan analizar con métodos adecuados. Entre estos se cuentan las técnicas provenientes del aprendizaje automático estadístico y, en particular, los métodos kernel. Por otro lado, la visualización de secuencias de proteínas de alta dimensionalidad puede ser una herramienta clave para la exploración y análisis de las mismas. Es por ello que el objetivo central de la investigación descrita en esta tesis se puede desdoblar en dos grandes líneas: primero, el diseño de métodos centrados en la visualización y basados en la inteligencia artificial para el análisis de los datos secuenciales correspondientes a los GPCRs y, segundo, la aplicación de los métodos desarrollados a problemas de farmacoproteómica tales como la subtipificación de GPCRs y el análisis de proteinas no-alineadas.</description>
<date>2017-12-19</date>
<date>2017-12-19</date>
<date>2017-09-18</date>
<type>info:eu-repo/semantics/doctoralThesis</type>
<type>info:eu-repo/semantics/publishedVersion</type>
<identifier>http://hdl.handle.net/10803/458380</identifier>
<language>eng</language>
<rights>ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</rights>
<rights>info:eu-repo/semantics/openAccess</rights>
<publisher>Universitat Politècnica de Catalunya</publisher>
<source>TDX (Tesis Doctorals en Xarxa)</source>
</thesis>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>00925njm 22002777a 4500</leader>
<datafield ind1=" " ind2=" " tag="042">
<subfield code="a">dc</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Cárdenas Domínguez, Martha Ivón</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="260">
<subfield code="c">2017-09-18</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">Arguably, drug research has contributed more to the progress of medicine during the past decades than any other scientific factor. One of the main areas of drug research is related to the analysis of proteins. The world of pharmacology is becoming increasingly dependent on the advances in the fields of genomics and proteomics. This dependency brings about the challenge of finding robust methods to analyze the complex data they generate. Such challenge invites us to go one step further than traditional statistics and resort to approaches under the conceptual umbrella of artificial intelligence, including machine learning (ML), statistical pattern recognition and soft computing methods. Sound statistical principles are essential to trust the evidence base built through the use of such approaches. Statistical ML methods are thus at the core of the current thesis. More than 50% of drugs currently available target only four key protein families, from which almost a 30% correspond to the G Protein-Coupled Receptors (GPCR) superfamily. This superfamily regulates the function of most cells in living organisms and is at the centre of the investigations reported in the current thesis. No much is known about the 3D structure of these proteins. Fortunately, plenty of information regarding their amino acid sequences is readily available. The automatic grouping and classification of GPCRs into families and these into subtypes based on sequence analysis may significantly contribute to ascertain the pharmaceutically relevant properties of this protein superfamily. There is no biologically-relevant manner of representing the symbolic sequences describing proteins using real-valued vectors. This does not preclude the possibility of analyzing them using principled methods. These may come, amongst others, from the field of statisticalML. Particularly, kernel methods can be used to this purpose. Moreover, the visualization of high-dimensional protein sequence data can be a key exploratory tool for finding meaningful information that might be obscured by their intrinsic complexity. That is why the objective of the research described in this thesis is twofold: first, the design of adequate visualization-oriented artificial intelligence-based methods for the analysis of GPCR sequential data, and second, the application of the developed methods in relevant pharmacoproteomic problems such as GPCR subtyping and protein alignment-free analysis.</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">Se podría decir que la investigación farmacológica ha desempeñado un papel predominante en el avance de la medicina a lo largo de las últimas décadas. Una de las áreas principales de investigación farmacológica es la relacionada con el estudio de proteínas. La farmacología depende cada vez más de los avances en genómica y proteómica, lo que conlleva el reto de diseñar métodos robustos para el análisis de los datos complejos que generan. Tal reto nos incita a ir más allá de la estadística tradicional para recurrir a enfoques dentro del campo de la inteligencia artificial, incluyendo el aprendizaje automático y el reconocimiento de patrones estadístico, entre otros. El uso de principios sólidos de teoría estadística es esencial para confiar en la base de evidencia obtenida mediante estos enfoques. Los métodos de aprendizaje automático estadístico son uno de los fundamentos de esta tesis. Más del 50% de los fármacos en uso hoy en día tienen como ¿diana¿ apenas cuatro familias clave de proteínas, de las que un 30% corresponden a la super-familia de los G-Protein Coupled Receptors (GPCR). Los GPCR regulan la funcionalidad de la mayoría de las células y son el objetivo central de la tesis. Se desconoce la estructura 3D de la mayoría de estas proteínas, pero, en cambio, hay mucha información disponible de sus secuencias de amino ácidos. El agrupamiento y clasificación automáticos de los GPCR en familias, y de éstas a su vez en subtipos, en base a sus secuencias, pueden contribuir de forma significativa a dilucidar aquellas de sus propiedades de interés farmacológico. No hay forma biológicamente relevante de representar las secuencias simbólicas de las proteínas mediante vectores reales. Esto no impide que se puedan analizar con métodos adecuados. Entre estos se cuentan las técnicas provenientes del aprendizaje automático estadístico y, en particular, los métodos kernel. Por otro lado, la visualización de secuencias de proteínas de alta dimensionalidad puede ser una herramienta clave para la exploración y análisis de las mismas. Es por ello que el objetivo central de la investigación descrita en esta tesis se puede desdoblar en dos grandes líneas: primero, el diseño de métodos centrados en la visualización y basados en la inteligencia artificial para el análisis de los datos secuenciales correspondientes a los GPCRs y, segundo, la aplicación de los métodos desarrollados a problemas de farmacoproteómica tales como la subtipificación de GPCRs y el análisis de proteinas no-alineadas.</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">http://hdl.handle.net/10803/458380</subfield>
</datafield>
<datafield ind1="0" ind2="0" tag="245">
<subfield code="a">A computational intelligence analysis of G proteincoupled receptor sequinces for pharmacoproteomic applications</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>nam a 5i 4500</leader>
<datafield ind1="1" ind2="0" tag="245">
<subfield code="a">A computational intelligence analysis of G proteincoupled receptor sequinces for pharmacoproteomic applications</subfield>
</datafield>
<datafield ind1=" " ind2="1" tag="264">
<subfield code="a">[Barcelona] :</subfield>
<subfield code="b">Universitat Politècnica de Catalunya,</subfield>
<subfield code="c">2017</subfield>
</datafield>
<datafield ind1="4" ind2="0" tag="856">
<subfield code="z">Accés lliure</subfield>
<subfield code="u">http://hdl.handle.net/10803/458380</subfield>
</datafield>
<controlfield tag="007">cr |||||||||||</controlfield>
<controlfield tag="008">AAMMDDs2017 sp ||||fsm||||0|| 0 eng|c</controlfield>
<datafield ind1="1" ind2=" " tag="100">
<subfield code="a">Cárdenas Domínguez, Martha Ivón,</subfield>
<subfield code="e">autor</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="300">
<subfield code="a">1 recurs en línia (211 pàgines)</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="502">
<subfield code="g">Tesi</subfield>
<subfield code="b">Doctorat</subfield>
<subfield code="c">Universitat Politècnica de Catalunya. Departament de Ciències de la Computació</subfield>
<subfield code="d">2017</subfield>
</datafield>
<datafield ind1="2" ind2=" " tag="710">
<subfield code="a">Universitat Politècnica de Catalunya. Departament de Ciències de la Computació</subfield>
</datafield>
<datafield ind1=" " ind2="4" tag="655">
<subfield code="a">Tesis i dissertacions electròniques</subfield>
</datafield>
<datafield ind1="1" ind2=" " tag="700">
<subfield code="a">Vellido, Alfredo,</subfield>
<subfield code="e">supervisor acadèmic</subfield>
</datafield>
<datafield ind1="1" ind2=" " tag="700">
<subfield code="a">Giraldo, Jesús,</subfield>
<subfield code="e">supervisor acadèmic</subfield>
</datafield>
<datafield ind1="0" ind2=" " tag="730">
<subfield code="a">TDX</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">Arguably, drug research has contributed more to the progress of medicine during the past decades than any other scientific factor. One of the main areas of drug research is related to the analysis of proteins. The world of pharmacology is becoming increasingly dependent on the advances in the fields of genomics and proteomics. This dependency brings about the challenge of finding robust methods to analyze the complex data they generate. Such challenge invites us to go one step further than traditional statistics and resort to approaches under the conceptual umbrella of artificial intelligence, including machine learning (ML), statistical pattern recognition and soft computing methods. Sound statistical principles are essential to trust the evidence base built through the use of such approaches. Statistical ML methods are thus at the core of the current thesis. More than 50% of drugs currently available target only four key protein families, from which almost a 30% correspond to the G Protein-Coupled Receptors (GPCR) superfamily. This superfamily regulates the function of most cells in living organisms and is at the centre of the investigations reported in the current thesis. No much is known about the 3D structure of these proteins. Fortunately, plenty of information regarding their amino acid sequences is readily available. The automatic grouping and classification of GPCRs into families and these into subtypes based on sequence analysis may significantly contribute to ascertain the pharmaceutically relevant properties of this protein superfamily. There is no biologically-relevant manner of representing the symbolic sequences describing proteins using real-valued vectors. This does not preclude the possibility of analyzing them using principled methods. These may come, amongst others, from the field of statisticalML. Particularly, kernel methods can be used to this purpose. Moreover, the visualization of high-dimensional protein sequence data can be a key exploratory tool for finding meaningful information that might be obscured by their intrinsic complexity. That is why the objective of the research described in this thesis is twofold: first, the design of adequate visualization-oriented artificial intelligence-based methods for the analysis of GPCR sequential data, and second, the application of the developed methods in relevant pharmacoproteomic problems such as GPCR subtyping and protein alignment-free analysis.</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="998">
<subfield code="a">p</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="040">
<subfield code="a">ES-BaCBU</subfield>
<subfield code="b">cat</subfield>
<subfield code="e">rda</subfield>
<subfield code="c">ES-BaCBU</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="336">
<subfield code="a">text</subfield>
<subfield code="b">txt</subfield>
<subfield code="2">rdacontent</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="337">
<subfield code="a">informàtic</subfield>
<subfield code="b">c</subfield>
<subfield code="2">rdamedia</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="338">
<subfield code="a">recurs en línia</subfield>
<subfield code="b">cr</subfield>
<subfield code="2">rdacarrier</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<mets ID=" DSpace_ITEM_10803-458380" OBJID=" hdl:10803/458380" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">
<metsHdr CREATEDATE="2024-10-03T17:42:13Z">
<agent ROLE="CUSTODIAN" TYPE="ORGANIZATION">
<name>TDX (Tesis Doctorals en Xarxa)</name>
</agent>
</metsHdr>
<dmdSec ID="DMD_10803_458380">
<mdWrap MDTYPE="MODS">
<xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Cárdenas Domínguez, Martha Ivón</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">authoremail</mods:roleTerm>
</mods:role>
<mods:namePart>marthaivon@yahoo.es</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">authoremailshow</mods:roleTerm>
</mods:role>
<mods:namePart>false</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">director</mods:roleTerm>
</mods:role>
<mods:namePart>Vellido, Alfredo</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">codirector</mods:roleTerm>
</mods:role>
<mods:namePart>Giraldo, Jesús</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">authorsendemail</mods:roleTerm>
</mods:role>
<mods:namePart>true</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2017-12-19T14:06:19Z</mods:dateAccessioned>
</mods:extension>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2017-12-19T14:06:19Z</mods:dateAvailable>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2017-09-18</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="uri">http://hdl.handle.net/10803/458380</mods:identifier>
<mods:abstract>Arguably, drug research has contributed more to the progress of medicine during the past decades than any other scientific factor. One of the main areas of drug research is related to the analysis of proteins. The world of pharmacology is becoming increasingly dependent on the advances in the fields of genomics and proteomics. This dependency brings about the challenge of finding robust methods to analyze the complex data they generate. Such challenge invites us to go one step further than traditional statistics and resort to approaches under the conceptual umbrella of artificial intelligence, including machine learning (ML), statistical pattern recognition and soft computing methods. Sound statistical principles are essential to trust the evidence base built through the use of such approaches. Statistical ML methods are thus at the core of the current thesis. More than 50% of drugs currently available target only four key protein families, from which almost a 30% correspond to the G Protein-Coupled Receptors (GPCR) superfamily. This superfamily regulates the function of most cells in living organisms and is at the centre of the investigations reported in the current thesis. No much is known about the 3D structure of these proteins. Fortunately, plenty of information regarding their amino acid sequences is readily available. The automatic grouping and classification of GPCRs into families and these into subtypes based on sequence analysis may significantly contribute to ascertain the pharmaceutically relevant properties of this protein superfamily. There is no biologically-relevant manner of representing the symbolic sequences describing proteins using real-valued vectors. This does not preclude the possibility of analyzing them using principled methods. These may come, amongst others, from the field of statisticalML. Particularly, kernel methods can be used to this purpose. Moreover, the visualization of high-dimensional protein sequence data can be a key exploratory tool for finding meaningful information that might be obscured by their intrinsic complexity. That is why the objective of the research described in this thesis is twofold: first, the design of adequate visualization-oriented artificial intelligence-based methods for the analysis of GPCR sequential data, and second, the application of the developed methods in relevant pharmacoproteomic problems such as GPCR subtyping and protein alignment-free analysis.Se podría decir que la investigación farmacológica ha desempeñado un papel predominante en el avance de la medicina a lo largo de las últimas décadas. Una de las áreas principales de investigación farmacológica es la relacionada con el estudio de proteínas. La farmacología depende cada vez más de los avances en genómica y proteómica, lo que conlleva el reto de diseñar métodos robustos para el análisis de los datos complejos que generan. Tal reto nos incita a ir más allá de la estadística tradicional para recurrir a enfoques dentro del campo de la inteligencia artificial, incluyendo el aprendizaje automático y el reconocimiento de patrones estadístico, entre otros. El uso de principios sólidos de teoría estadística es esencial para confiar en la base de evidencia obtenida mediante estos enfoques. Los métodos de aprendizaje automático estadístico son uno de los fundamentos de esta tesis. Más del 50% de los fármacos en uso hoy en día tienen como ¿diana¿ apenas cuatro familias clave de proteínas, de las que un 30% corresponden a la super-familia de los G-Protein Coupled Receptors (GPCR). Los GPCR regulan la funcionalidad de la mayoría de las células y son el objetivo central de la tesis. Se desconoce la estructura 3D de la mayoría de estas proteínas, pero, en cambio, hay mucha información disponible de sus secuencias de amino ácidos. El agrupamiento y clasificación automáticos de los GPCR en familias, y de éstas a su vez en subtipos, en base a sus secuencias, pueden contribuir de forma significativa a dilucidar aquellas de sus propiedades de interés farmacológico. No hay forma biológicamente relevante de representar las secuencias simbólicas de las proteínas mediante vectores reales. Esto no impide que se puedan analizar con métodos adecuados. Entre estos se cuentan las técnicas provenientes del aprendizaje automático estadístico y, en particular, los métodos kernel. Por otro lado, la visualización de secuencias de proteínas de alta dimensionalidad puede ser una herramienta clave para la exploración y análisis de las mismas. Es por ello que el objetivo central de la investigación descrita en esta tesis se puede desdoblar en dos grandes líneas: primero, el diseño de métodos centrados en la visualización y basados en la inteligencia artificial para el análisis de los datos secuenciales correspondientes a los GPCRs y, segundo, la aplicación de los métodos desarrollados a problemas de farmacoproteómica tales como la subtipificación de GPCRs y el análisis de proteinas no-alineadas.</mods:abstract>
<mods:language>
<mods:languageTerm authority="rfc3066">eng</mods:languageTerm>
</mods:language>
<mods:titleInfo>
<mods:title>A computational intelligence analysis of G proteincoupled receptor sequinces for pharmacoproteomic applications</mods:title>
</mods:titleInfo>
<mods:genre>info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/publishedVersion</mods:genre>
</mods:mods>
</xmlData>
</mdWrap>
</dmdSec>
<amdSec ID="FO_10803_458380_1">
<techMD ID="TECH_O_10803_458380_1">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>https://www.tdx.cat/bitstream/10803/458380/1/TMICD1de1.pdf</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>ae1d7beb0b0c4da1faae8a7d53e15ada</premis:messageDigest>
</premis:fixity>
<premis:size>11183896</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>application/pdf</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>TMICD1de1.pdf</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<amdSec ID="FT_10803_458380_3">
<techMD ID="TECH_T_10803_458380_3">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>https://www.tdx.cat/bitstream/10803/458380/3/TMICD1de1.pdf.txt</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>58bcd529e6a0c83381716a67534b81cd</premis:messageDigest>
</premis:fixity>
<premis:size>269091</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>text/plain</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>TMICD1de1.pdf.txt</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<fileSec>
<fileGrp USE="ORIGINAL">
<file ADMID="FO_10803_458380_1" CHECKSUM="ae1d7beb0b0c4da1faae8a7d53e15ada" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_10803_458380_1" ID="BITSTREAM_ORIGINAL_10803_458380_1" MIMETYPE="application/pdf" SEQ="1" SIZE="11183896">
</file>
</fileGrp>
<fileGrp USE="TEXT">
<file ADMID="FT_10803_458380_3" CHECKSUM="58bcd529e6a0c83381716a67534b81cd" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_10803_458380_3" ID="BITSTREAM_TEXT_10803_458380_3" MIMETYPE="text/plain" SEQ="3" SIZE="269091">
</file>
</fileGrp>
</fileSec>
<structMap LABEL="DSpace Object" TYPE="LOGICAL">
<div ADMID="DMD_10803_458380" TYPE="DSpace Object Contents">
<div TYPE="DSpace BITSTREAM">
</div>
</div>
</structMap>
</mets>
<?xml version="1.0" encoding="UTF-8" ?>
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:namePart>Cárdenas Domínguez, Martha Ivón</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2017-12-19T14:06:19Z</mods:dateAvailable>
</mods:extension>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2017-12-19T14:06:19Z</mods:dateAccessioned>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2017-09-18</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="uri">http://hdl.handle.net/10803/458380</mods:identifier>
<mods:abstract>Arguably, drug research has contributed more to the progress of medicine during the past decades than any other scientific factor. One of the main areas of drug research is related to the analysis of proteins. The world of pharmacology is becoming increasingly dependent on the advances in the fields of genomics and proteomics. This dependency brings about the challenge of finding robust methods to analyze the complex data they generate. Such challenge invites us to go one step further than traditional statistics and resort to approaches under the conceptual umbrella of artificial intelligence, including machine learning (ML), statistical pattern recognition and soft computing methods. Sound statistical principles are essential to trust the evidence base built through the use of such approaches. Statistical ML methods are thus at the core of the current thesis. More than 50% of drugs currently available target only four key protein families, from which almost a 30% correspond to the G Protein-Coupled Receptors (GPCR) superfamily. This superfamily regulates the function of most cells in living organisms and is at the centre of the investigations reported in the current thesis. No much is known about the 3D structure of these proteins. Fortunately, plenty of information regarding their amino acid sequences is readily available. The automatic grouping and classification of GPCRs into families and these into subtypes based on sequence analysis may significantly contribute to ascertain the pharmaceutically relevant properties of this protein superfamily. There is no biologically-relevant manner of representing the symbolic sequences describing proteins using real-valued vectors. This does not preclude the possibility of analyzing them using principled methods. These may come, amongst others, from the field of statisticalML. Particularly, kernel methods can be used to this purpose. Moreover, the visualization of high-dimensional protein sequence data can be a key exploratory tool for finding meaningful information that might be obscured by their intrinsic complexity. That is why the objective of the research described in this thesis is twofold: first, the design of adequate visualization-oriented artificial intelligence-based methods for the analysis of GPCR sequential data, and second, the application of the developed methods in relevant pharmacoproteomic problems such as GPCR subtyping and protein alignment-free analysis.</mods:abstract>
<mods:abstract>Se podría decir que la investigación farmacológica ha desempeñado un papel predominante en el avance de la medicina a lo largo de las últimas décadas. Una de las áreas principales de investigación farmacológica es la relacionada con el estudio de proteínas. La farmacología depende cada vez más de los avances en genómica y proteómica, lo que conlleva el reto de diseñar métodos robustos para el análisis de los datos complejos que generan. Tal reto nos incita a ir más allá de la estadística tradicional para recurrir a enfoques dentro del campo de la inteligencia artificial, incluyendo el aprendizaje automático y el reconocimiento de patrones estadístico, entre otros. El uso de principios sólidos de teoría estadística es esencial para confiar en la base de evidencia obtenida mediante estos enfoques. Los métodos de aprendizaje automático estadístico son uno de los fundamentos de esta tesis. Más del 50% de los fármacos en uso hoy en día tienen como ¿diana¿ apenas cuatro familias clave de proteínas, de las que un 30% corresponden a la super-familia de los G-Protein Coupled Receptors (GPCR). Los GPCR regulan la funcionalidad de la mayoría de las células y son el objetivo central de la tesis. Se desconoce la estructura 3D de la mayoría de estas proteínas, pero, en cambio, hay mucha información disponible de sus secuencias de amino ácidos. El agrupamiento y clasificación automáticos de los GPCR en familias, y de éstas a su vez en subtipos, en base a sus secuencias, pueden contribuir de forma significativa a dilucidar aquellas de sus propiedades de interés farmacológico. No hay forma biológicamente relevante de representar las secuencias simbólicas de las proteínas mediante vectores reales. Esto no impide que se puedan analizar con métodos adecuados. Entre estos se cuentan las técnicas provenientes del aprendizaje automático estadístico y, en particular, los métodos kernel. Por otro lado, la visualización de secuencias de proteínas de alta dimensionalidad puede ser una herramienta clave para la exploración y análisis de las mismas. Es por ello que el objetivo central de la investigación descrita en esta tesis se puede desdoblar en dos grandes líneas: primero, el diseño de métodos centrados en la visualización y basados en la inteligencia artificial para el análisis de los datos secuenciales correspondientes a los GPCRs y, segundo, la aplicación de los métodos desarrollados a problemas de farmacoproteómica tales como la subtipificación de GPCRs y el análisis de proteinas no-alineadas.</mods:abstract>
<mods:language>
<mods:languageTerm>eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">info:eu-repo/semantics/openAccess</mods:accessCondition>
<mods:titleInfo>
<mods:title>A computational intelligence analysis of G proteincoupled receptor sequinces for pharmacoproteomic applications</mods:title>
</mods:titleInfo>
<mods:genre>info:eu-repo/semantics/doctoralThesis</mods:genre>
<mods:genre>info:eu-repo/semantics/publishedVersion</mods:genre>
</mods:mods>
<?xml version="1.0" encoding="UTF-8" ?>
<oaire:record schemaLocation="http://namespaceopenaire.eu/schema/oaire/">
<dc:title>A computational intelligence analysis of G proteincoupled receptor sequinces for pharmacoproteomic applications</dc:title>
<datacite:creator>
<datacite:creatorName>Cárdenas Domínguez, Martha Ivón</datacite:creatorName>
</datacite:creator>
<datacite:contributor>marthaivon@yahoo.es</datacite:contributor>
<datacite:contributor>false</datacite:contributor>
<datacite:contributor>Vellido, Alfredo</datacite:contributor>
<datacite:contributor>Giraldo, Jesús</datacite:contributor>
<datacite:contributor>true</datacite:contributor>
<datacite:contributor>Universitat Politècnica de Catalunya. Departament de Ciències de la Computació</datacite:contributor>
<dc:subject>Àrees temàtiques de la UPC::Informàtica</dc:subject>
<dc:subject>004</dc:subject>
<dc:description>Arguably, drug research has contributed more to the progress of medicine during the past decades than any other scientific factor. One of the main areas of drug research is related to the analysis of proteins. The world of pharmacology is becoming increasingly dependent on the advances in the fields of genomics and proteomics. This dependency brings about the challenge of finding robust methods to analyze the complex data they generate. Such challenge invites us to go one step further than traditional statistics and resort to approaches under the conceptual umbrella of artificial intelligence, including machine learning (ML), statistical pattern recognition and soft computing methods. Sound statistical principles are essential to trust the evidence base built through the use of such approaches. Statistical ML methods are thus at the core of the current thesis. More than 50% of drugs currently available target only four key protein families, from which almost a 30% correspond to the G Protein-Coupled Receptors (GPCR) superfamily. This superfamily regulates the function of most cells in living organisms and is at the centre of the investigations reported in the current thesis. No much is known about the 3D structure of these proteins. Fortunately, plenty of information regarding their amino acid sequences is readily available. The automatic grouping and classification of GPCRs into families and these into subtypes based on sequence analysis may significantly contribute to ascertain the pharmaceutically relevant properties of this protein superfamily. There is no biologically-relevant manner of representing the symbolic sequences describing proteins using real-valued vectors. This does not preclude the possibility of analyzing them using principled methods. These may come, amongst others, from the field of statisticalML. Particularly, kernel methods can be used to this purpose. Moreover, the visualization of high-dimensional protein sequence data can be a key exploratory tool for finding meaningful information that might be obscured by their intrinsic complexity. That is why the objective of the research described in this thesis is twofold: first, the design of adequate visualization-oriented artificial intelligence-based methods for the analysis of GPCR sequential data, and second, the application of the developed methods in relevant pharmacoproteomic problems such as GPCR subtyping and protein alignment-free analysis.</dc:description>
<dc:description>Se podría decir que la investigación farmacológica ha desempeñado un papel predominante en el avance de la medicina a lo largo de las últimas décadas. Una de las áreas principales de investigación farmacológica es la relacionada con el estudio de proteínas. La farmacología depende cada vez más de los avances en genómica y proteómica, lo que conlleva el reto de diseñar métodos robustos para el análisis de los datos complejos que generan. Tal reto nos incita a ir más allá de la estadística tradicional para recurrir a enfoques dentro del campo de la inteligencia artificial, incluyendo el aprendizaje automático y el reconocimiento de patrones estadístico, entre otros. El uso de principios sólidos de teoría estadística es esencial para confiar en la base de evidencia obtenida mediante estos enfoques. Los métodos de aprendizaje automático estadístico son uno de los fundamentos de esta tesis. Más del 50% de los fármacos en uso hoy en día tienen como ¿diana¿ apenas cuatro familias clave de proteínas, de las que un 30% corresponden a la super-familia de los G-Protein Coupled Receptors (GPCR). Los GPCR regulan la funcionalidad de la mayoría de las células y son el objetivo central de la tesis. Se desconoce la estructura 3D de la mayoría de estas proteínas, pero, en cambio, hay mucha información disponible de sus secuencias de amino ácidos. El agrupamiento y clasificación automáticos de los GPCR en familias, y de éstas a su vez en subtipos, en base a sus secuencias, pueden contribuir de forma significativa a dilucidar aquellas de sus propiedades de interés farmacológico. No hay forma biológicamente relevante de representar las secuencias simbólicas de las proteínas mediante vectores reales. Esto no impide que se puedan analizar con métodos adecuados. Entre estos se cuentan las técnicas provenientes del aprendizaje automático estadístico y, en particular, los métodos kernel. Por otro lado, la visualización de secuencias de proteínas de alta dimensionalidad puede ser una herramienta clave para la exploración y análisis de las mismas. Es por ello que el objetivo central de la investigación descrita en esta tesis se puede desdoblar en dos grandes líneas: primero, el diseño de métodos centrados en la visualización y basados en la inteligencia artificial para el análisis de los datos secuenciales correspondientes a los GPCRs y, segundo, la aplicación de los métodos desarrollados a problemas de farmacoproteómica tales como la subtipificación de GPCRs y el análisis de proteinas no-alineadas.</dc:description>
<dc:date>2017-12-19T14:06:19Z</dc:date>
<dc:date>2017-12-19T14:06:19Z</dc:date>
<dc:date>2017-09-18</dc:date>
<dc:type>info:eu-repo/semantics/doctoralThesis</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<datacite:alternateIdentifier>http://hdl.handle.net/10803/458380</datacite:alternateIdentifier>
<dc:language>eng</dc:language>
<dc:rights>ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:format>211 p.</dc:format>
<dc:format>application/pdf</dc:format>
<dc:format>application/pdf</dc:format>
<dc:publisher>Universitat Politècnica de Catalunya</dc:publisher>
<dc:source>TDX (Tesis Doctorals en Xarxa)</dc:source>
<oaire:file>https://www.tdx.cat/bitstream/10803/458380/1/TMICD1de1.pdf</oaire:file>
</oaire:record>
<?xml version="1.0" encoding="UTF-8" ?>
<atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">
<atom:id>http://hdl.handle.net/10803/458380/ore.xml</atom:id>
<atom:published>2017-12-19T14:06:19Z</atom:published>
<atom:updated>2017-12-19T14:06:19Z</atom:updated>
<atom:source>
<atom:generator>TDX (Tesis Doctorals en Xarxa)</atom:generator>
</atom:source>
<atom:title>A computational intelligence analysis of G proteincoupled receptor sequinces for pharmacoproteomic applications</atom:title>
<atom:author>
<atom:name>Cárdenas Domínguez, Martha Ivón</atom:name>
</atom:author>
<oreatom:triples>
<rdf:Description about="http://hdl.handle.net/10803/458380/ore.xml#atom">
<dcterms:modified>2017-12-19T14:06:19Z</dcterms:modified>
</rdf:Description>
<rdf:Description about="https://www.tdx.cat/bitstream/10803/458380/3/TMICD1de1.pdf.txt">
<dcterms:description>TEXT</dcterms:description>
</rdf:Description>
<rdf:Description about="https://www.tdx.cat/bitstream/10803/458380/1/TMICD1de1.pdf">
<dcterms:description>ORIGINAL</dcterms:description>
</rdf:Description>
<rdf:Description about="https://www.tdx.cat/bitstream/10803/458380/2/TMICD1de1.pdf.xml">
<dcterms:description>MEDIA_DOCUMENT</dcterms:description>
</rdf:Description>
</oreatom:triples>
</atom:entry>
<?xml version="1.0" encoding="UTF-8" ?>
<qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">
<dc:title>A computational intelligence analysis of G proteincoupled receptor sequinces for pharmacoproteomic applications</dc:title>
<dc:creator>Cárdenas Domínguez, Martha Ivón</dc:creator>
<dc:contributor>Vellido, Alfredo</dc:contributor>
<dc:contributor>Giraldo, Jesús</dc:contributor>
<dcterms:abstract>Arguably, drug research has contributed more to the progress of medicine during the past decades than any other scientific factor. One of the main areas of drug research is related to the analysis of proteins. The world of pharmacology is becoming increasingly dependent on the advances in the fields of genomics and proteomics. This dependency brings about the challenge of finding robust methods to analyze the complex data they generate. Such challenge invites us to go one step further than traditional statistics and resort to approaches under the conceptual umbrella of artificial intelligence, including machine learning (ML), statistical pattern recognition and soft computing methods. Sound statistical principles are essential to trust the evidence base built through the use of such approaches. Statistical ML methods are thus at the core of the current thesis. More than 50% of drugs currently available target only four key protein families, from which almost a 30% correspond to the G Protein-Coupled Receptors (GPCR) superfamily. This superfamily regulates the function of most cells in living organisms and is at the centre of the investigations reported in the current thesis. No much is known about the 3D structure of these proteins. Fortunately, plenty of information regarding their amino acid sequences is readily available. The automatic grouping and classification of GPCRs into families and these into subtypes based on sequence analysis may significantly contribute to ascertain the pharmaceutically relevant properties of this protein superfamily. There is no biologically-relevant manner of representing the symbolic sequences describing proteins using real-valued vectors. This does not preclude the possibility of analyzing them using principled methods. These may come, amongst others, from the field of statisticalML. Particularly, kernel methods can be used to this purpose. Moreover, the visualization of high-dimensional protein sequence data can be a key exploratory tool for finding meaningful information that might be obscured by their intrinsic complexity. That is why the objective of the research described in this thesis is twofold: first, the design of adequate visualization-oriented artificial intelligence-based methods for the analysis of GPCR sequential data, and second, the application of the developed methods in relevant pharmacoproteomic problems such as GPCR subtyping and protein alignment-free analysis.</dcterms:abstract>
<dcterms:abstract>Se podría decir que la investigación farmacológica ha desempeñado un papel predominante en el avance de la medicina a lo largo de las últimas décadas. Una de las áreas principales de investigación farmacológica es la relacionada con el estudio de proteínas. La farmacología depende cada vez más de los avances en genómica y proteómica, lo que conlleva el reto de diseñar métodos robustos para el análisis de los datos complejos que generan. Tal reto nos incita a ir más allá de la estadística tradicional para recurrir a enfoques dentro del campo de la inteligencia artificial, incluyendo el aprendizaje automático y el reconocimiento de patrones estadístico, entre otros. El uso de principios sólidos de teoría estadística es esencial para confiar en la base de evidencia obtenida mediante estos enfoques. Los métodos de aprendizaje automático estadístico son uno de los fundamentos de esta tesis. Más del 50% de los fármacos en uso hoy en día tienen como ¿diana¿ apenas cuatro familias clave de proteínas, de las que un 30% corresponden a la super-familia de los G-Protein Coupled Receptors (GPCR). Los GPCR regulan la funcionalidad de la mayoría de las células y son el objetivo central de la tesis. Se desconoce la estructura 3D de la mayoría de estas proteínas, pero, en cambio, hay mucha información disponible de sus secuencias de amino ácidos. El agrupamiento y clasificación automáticos de los GPCR en familias, y de éstas a su vez en subtipos, en base a sus secuencias, pueden contribuir de forma significativa a dilucidar aquellas de sus propiedades de interés farmacológico. No hay forma biológicamente relevante de representar las secuencias simbólicas de las proteínas mediante vectores reales. Esto no impide que se puedan analizar con métodos adecuados. Entre estos se cuentan las técnicas provenientes del aprendizaje automático estadístico y, en particular, los métodos kernel. Por otro lado, la visualización de secuencias de proteínas de alta dimensionalidad puede ser una herramienta clave para la exploración y análisis de las mismas. Es por ello que el objetivo central de la investigación descrita en esta tesis se puede desdoblar en dos grandes líneas: primero, el diseño de métodos centrados en la visualización y basados en la inteligencia artificial para el análisis de los datos secuenciales correspondientes a los GPCRs y, segundo, la aplicación de los métodos desarrollados a problemas de farmacoproteómica tales como la subtipificación de GPCRs y el análisis de proteinas no-alineadas.</dcterms:abstract>
<dcterms:dateAccepted>2017-12-19T14:06:19Z</dcterms:dateAccepted>
<dcterms:available>2017-12-19T14:06:19Z</dcterms:available>
<dcterms:created>2017-12-19T14:06:19Z</dcterms:created>
<dcterms:issued>2017-09-18</dcterms:issued>
<dc:type>info:eu-repo/semantics/doctoralThesis</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:identifier>http://hdl.handle.net/10803/458380</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:publisher>Universitat Politècnica de Catalunya</dc:publisher>
<dc:source>TDX (Tesis Doctorals en Xarxa)</dc:source>
</qdc:qualifieddc>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">
<ow:Publication about="oai:www.tdx.cat:10803/458380">
<dc:title>A computational intelligence analysis of G proteincoupled receptor sequinces for pharmacoproteomic applications</dc:title>
<dc:creator>Cárdenas Domínguez, Martha Ivón</dc:creator>
<dc:contributor>marthaivon@yahoo.es</dc:contributor>
<dc:contributor>false</dc:contributor>
<dc:contributor>Vellido, Alfredo</dc:contributor>
<dc:contributor>Giraldo, Jesús</dc:contributor>
<dc:contributor>true</dc:contributor>
<dc:description>Arguably, drug research has contributed more to the progress of medicine during the past decades than any other scientific factor. One of the main areas of drug research is related to the analysis of proteins. The world of pharmacology is becoming increasingly dependent on the advances in the fields of genomics and proteomics. This dependency brings about the challenge of finding robust methods to analyze the complex data they generate. Such challenge invites us to go one step further than traditional statistics and resort to approaches under the conceptual umbrella of artificial intelligence, including machine learning (ML), statistical pattern recognition and soft computing methods. Sound statistical principles are essential to trust the evidence base built through the use of such approaches. Statistical ML methods are thus at the core of the current thesis. More than 50% of drugs currently available target only four key protein families, from which almost a 30% correspond to the G Protein-Coupled Receptors (GPCR) superfamily. This superfamily regulates the function of most cells in living organisms and is at the centre of the investigations reported in the current thesis. No much is known about the 3D structure of these proteins. Fortunately, plenty of information regarding their amino acid sequences is readily available. The automatic grouping and classification of GPCRs into families and these into subtypes based on sequence analysis may significantly contribute to ascertain the pharmaceutically relevant properties of this protein superfamily. There is no biologically-relevant manner of representing the symbolic sequences describing proteins using real-valued vectors. This does not preclude the possibility of analyzing them using principled methods. These may come, amongst others, from the field of statisticalML. Particularly, kernel methods can be used to this purpose. Moreover, the visualization of high-dimensional protein sequence data can be a key exploratory tool for finding meaningful information that might be obscured by their intrinsic complexity. That is why the objective of the research described in this thesis is twofold: first, the design of adequate visualization-oriented artificial intelligence-based methods for the analysis of GPCR sequential data, and second, the application of the developed methods in relevant pharmacoproteomic problems such as GPCR subtyping and protein alignment-free analysis.</dc:description>
<dc:description>Se podría decir que la investigación farmacológica ha desempeñado un papel predominante en el avance de la medicina a lo largo de las últimas décadas. Una de las áreas principales de investigación farmacológica es la relacionada con el estudio de proteínas. La farmacología depende cada vez más de los avances en genómica y proteómica, lo que conlleva el reto de diseñar métodos robustos para el análisis de los datos complejos que generan. Tal reto nos incita a ir más allá de la estadística tradicional para recurrir a enfoques dentro del campo de la inteligencia artificial, incluyendo el aprendizaje automático y el reconocimiento de patrones estadístico, entre otros. El uso de principios sólidos de teoría estadística es esencial para confiar en la base de evidencia obtenida mediante estos enfoques. Los métodos de aprendizaje automático estadístico son uno de los fundamentos de esta tesis. Más del 50% de los fármacos en uso hoy en día tienen como ¿diana¿ apenas cuatro familias clave de proteínas, de las que un 30% corresponden a la super-familia de los G-Protein Coupled Receptors (GPCR). Los GPCR regulan la funcionalidad de la mayoría de las células y son el objetivo central de la tesis. Se desconoce la estructura 3D de la mayoría de estas proteínas, pero, en cambio, hay mucha información disponible de sus secuencias de amino ácidos. El agrupamiento y clasificación automáticos de los GPCR en familias, y de éstas a su vez en subtipos, en base a sus secuencias, pueden contribuir de forma significativa a dilucidar aquellas de sus propiedades de interés farmacológico. No hay forma biológicamente relevante de representar las secuencias simbólicas de las proteínas mediante vectores reales. Esto no impide que se puedan analizar con métodos adecuados. Entre estos se cuentan las técnicas provenientes del aprendizaje automático estadístico y, en particular, los métodos kernel. Por otro lado, la visualización de secuencias de proteínas de alta dimensionalidad puede ser una herramienta clave para la exploración y análisis de las mismas. Es por ello que el objetivo central de la investigación descrita en esta tesis se puede desdoblar en dos grandes líneas: primero, el diseño de métodos centrados en la visualización y basados en la inteligencia artificial para el análisis de los datos secuenciales correspondientes a los GPCRs y, segundo, la aplicación de los métodos desarrollados a problemas de farmacoproteómica tales como la subtipificación de GPCRs y el análisis de proteinas no-alineadas.</dc:description>
<dc:date>2017-12-19T14:06:19Z</dc:date>
<dc:date>2017-12-19T14:06:19Z</dc:date>
<dc:date>2017-09-18</dc:date>
<dc:type>info:eu-repo/semantics/doctoralThesis</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:identifier>http://hdl.handle.net/10803/458380</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:publisher>Universitat Politècnica de Catalunya</dc:publisher>
<dc:source>TDX (Tesis Doctorals en Xarxa)</dc:source>
</ow:Publication>
</rdf:RDF>
<?xml version="1.0" encoding="UTF-8" ?>
<uketd_dc:uketddc schemaLocation="http://naca.central.cranfield.ac.uk/ethos-oai/2.0/ http://naca.central.cranfield.ac.uk/ethos-oai/2.0/uketd_dc.xsd">
<dc:title>A computational intelligence analysis of G proteincoupled receptor sequinces for pharmacoproteomic applications</dc:title>
<dc:creator>Cárdenas Domínguez, Martha Ivón</dc:creator>
<dcterms:abstract>Arguably, drug research has contributed more to the progress of medicine during the past decades than any other scientific factor. One of the main areas of drug research is related to the analysis of proteins. The world of pharmacology is becoming increasingly dependent on the advances in the fields of genomics and proteomics. This dependency brings about the challenge of finding robust methods to analyze the complex data they generate. Such challenge invites us to go one step further than traditional statistics and resort to approaches under the conceptual umbrella of artificial intelligence, including machine learning (ML), statistical pattern recognition and soft computing methods. Sound statistical principles are essential to trust the evidence base built through the use of such approaches. Statistical ML methods are thus at the core of the current thesis. More than 50% of drugs currently available target only four key protein families, from which almost a 30% correspond to the G Protein-Coupled Receptors (GPCR) superfamily. This superfamily regulates the function of most cells in living organisms and is at the centre of the investigations reported in the current thesis. No much is known about the 3D structure of these proteins. Fortunately, plenty of information regarding their amino acid sequences is readily available. The automatic grouping and classification of GPCRs into families and these into subtypes based on sequence analysis may significantly contribute to ascertain the pharmaceutically relevant properties of this protein superfamily. There is no biologically-relevant manner of representing the symbolic sequences describing proteins using real-valued vectors. This does not preclude the possibility of analyzing them using principled methods. These may come, amongst others, from the field of statisticalML. Particularly, kernel methods can be used to this purpose. Moreover, the visualization of high-dimensional protein sequence data can be a key exploratory tool for finding meaningful information that might be obscured by their intrinsic complexity. That is why the objective of the research described in this thesis is twofold: first, the design of adequate visualization-oriented artificial intelligence-based methods for the analysis of GPCR sequential data, and second, the application of the developed methods in relevant pharmacoproteomic problems such as GPCR subtyping and protein alignment-free analysis.</dcterms:abstract>
<dcterms:abstract>Se podría decir que la investigación farmacológica ha desempeñado un papel predominante en el avance de la medicina a lo largo de las últimas décadas. Una de las áreas principales de investigación farmacológica es la relacionada con el estudio de proteínas. La farmacología depende cada vez más de los avances en genómica y proteómica, lo que conlleva el reto de diseñar métodos robustos para el análisis de los datos complejos que generan. Tal reto nos incita a ir más allá de la estadística tradicional para recurrir a enfoques dentro del campo de la inteligencia artificial, incluyendo el aprendizaje automático y el reconocimiento de patrones estadístico, entre otros. El uso de principios sólidos de teoría estadística es esencial para confiar en la base de evidencia obtenida mediante estos enfoques. Los métodos de aprendizaje automático estadístico son uno de los fundamentos de esta tesis. Más del 50% de los fármacos en uso hoy en día tienen como ¿diana¿ apenas cuatro familias clave de proteínas, de las que un 30% corresponden a la super-familia de los G-Protein Coupled Receptors (GPCR). Los GPCR regulan la funcionalidad de la mayoría de las células y son el objetivo central de la tesis. Se desconoce la estructura 3D de la mayoría de estas proteínas, pero, en cambio, hay mucha información disponible de sus secuencias de amino ácidos. El agrupamiento y clasificación automáticos de los GPCR en familias, y de éstas a su vez en subtipos, en base a sus secuencias, pueden contribuir de forma significativa a dilucidar aquellas de sus propiedades de interés farmacológico. No hay forma biológicamente relevante de representar las secuencias simbólicas de las proteínas mediante vectores reales. Esto no impide que se puedan analizar con métodos adecuados. Entre estos se cuentan las técnicas provenientes del aprendizaje automático estadístico y, en particular, los métodos kernel. Por otro lado, la visualización de secuencias de proteínas de alta dimensionalidad puede ser una herramienta clave para la exploración y análisis de las mismas. Es por ello que el objetivo central de la investigación descrita en esta tesis se puede desdoblar en dos grandes líneas: primero, el diseño de métodos centrados en la visualización y basados en la inteligencia artificial para el análisis de los datos secuenciales correspondientes a los GPCRs y, segundo, la aplicación de los métodos desarrollados a problemas de farmacoproteómica tales como la subtipificación de GPCRs y el análisis de proteinas no-alineadas.</dcterms:abstract>
<uketdterms:institution>Universitat Politècnica de Catalunya</uketdterms:institution>
<dcterms:issued>2017-09-18</dcterms:issued>
<dc:type>info:eu-repo/semantics/doctoralThesis</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:language type="dcterms:ISO639-2">eng</dc:language>
<dcterms:isReferencedBy>http://hdl.handle.net/10803/458380</dcterms:isReferencedBy>
<dcterms:hasFormat>https://www.tdx.cat/bitstream/10803/458380/3/TMICD1de1.pdf.txt</dcterms:hasFormat>
<uketdterms:checksum type="uketdterms:MD5">58bcd529e6a0c83381716a67534b81cd</uketdterms:checksum>
<dc:identifier type="dcterms:URI">https://www.tdx.cat/bitstream/10803/458380/1/TMICD1de1.pdf</dc:identifier>
<uketdterms:checksum type="uketdterms:MD5">ae1d7beb0b0c4da1faae8a7d53e15ada</uketdterms:checksum>
<uketdterms:embargodate>cap</uketdterms:embargodate>
<dc:subject>Àrees temàtiques de la UPC::Informàtica</dc:subject>
</uketd_dc:uketddc>
<?xml version="1.0" encoding="UTF-8" ?>
<metadata schemaLocation="http://www.lyncode.com/xoai http://www.lyncode.com/xsd/xoai.xsd">
<element name="dc">
<element name="contributor">
<element name="none">
<field name="value">Universitat Politècnica de Catalunya. Departament de Ciències de la Computació</field>
</element>
<element name="author">
<element name="none">
<field name="value">Cárdenas Domínguez, Martha Ivón</field>
<field name="authority">6aa99a35-aa00-4f4f-9794-afd4de849363</field>
<field name="confidence">-1</field>
</element>
</element>
<element name="authoremail">
<element name="en_US">
<field name="value">marthaivon@yahoo.es</field>
</element>
</element>
<element name="authoremailshow">
<element name="en_US">
<field name="value">false</field>
</element>
</element>
<element name="director">
<element name="none">
<field name="value">Vellido, Alfredo</field>
<field name="authority">57ff1670-ce4d-4299-b550-41bb359d83c1</field>
<field name="confidence">-1</field>
</element>
</element>
<element name="codirector">
<element name="none">
<field name="value">Giraldo, Jesús</field>
<field name="authority">447b82e3-01d7-454e-9593-065455226021</field>
<field name="confidence">-1</field>
</element>
</element>
<element name="authorsendemail">
<element name="en_US">
<field name="value">true</field>
</element>
</element>
</element>
<element name="date">
<element name="accessioned">
<element name="none">
<field name="value">2017-12-19T14:06:19Z</field>
</element>
</element>
<element name="available">
<element name="none">
<field name="value">2017-12-19T14:06:19Z</field>
</element>
</element>
<element name="issued">
<element name="none">
<field name="value">2017-09-18</field>
</element>
</element>
</element>
<element name="identifier">
<element name="uri">
<element name="none">
<field name="value">http://hdl.handle.net/10803/458380</field>
</element>
</element>
</element>
<element name="description">
<element name="abstract">
<element name="en_US">
<field name="value">Arguably, drug research has contributed more to the progress of medicine during the past decades than any other scientific factor. One of the main areas of drug research is related to the analysis of proteins. The world of pharmacology is becoming increasingly dependent on the advances in the fields of genomics and proteomics. This dependency brings about the challenge of finding robust methods to analyze the complex data they generate. Such challenge invites us to go one step further than traditional statistics and resort to approaches under the conceptual umbrella of artificial intelligence, including machine learning (ML), statistical pattern recognition and soft computing methods. Sound statistical principles are essential to trust the evidence base built through the use of such approaches. Statistical ML methods are thus at the core of the current thesis. More than 50% of drugs currently available target only four key protein families, from which almost a 30% correspond to the G Protein-Coupled Receptors (GPCR) superfamily. This superfamily regulates the function of most cells in living organisms and is at the centre of the investigations reported in the current thesis. No much is known about the 3D structure of these proteins. Fortunately, plenty of information regarding their amino acid sequences is readily available. The automatic grouping and classification of GPCRs into families and these into subtypes based on sequence analysis may significantly contribute to ascertain the pharmaceutically relevant properties of this protein superfamily. There is no biologically-relevant manner of representing the symbolic sequences describing proteins using real-valued vectors. This does not preclude the possibility of analyzing them using principled methods. These may come, amongst others, from the field of statisticalML. Particularly, kernel methods can be used to this purpose. Moreover, the visualization of high-dimensional protein sequence data can be a key exploratory tool for finding meaningful information that might be obscured by their intrinsic complexity. That is why the objective of the research described in this thesis is twofold: first, the design of adequate visualization-oriented artificial intelligence-based methods for the analysis of GPCR sequential data, and second, the application of the developed methods in relevant pharmacoproteomic problems such as GPCR subtyping and protein alignment-free analysis.</field>
<field name="value">Se podría decir que la investigación farmacológica ha desempeñado un papel predominante en el avance de la medicina a lo largo de las últimas décadas. Una de las áreas principales de investigación farmacológica es la relacionada con el estudio de proteínas. La farmacología depende cada vez más de los avances en genómica y proteómica, lo que conlleva el reto de diseñar métodos robustos para el análisis de los datos complejos que generan. Tal reto nos incita a ir más allá de la estadística tradicional para recurrir a enfoques dentro del campo de la inteligencia artificial, incluyendo el aprendizaje automático y el reconocimiento de patrones estadístico, entre otros. El uso de principios sólidos de teoría estadística es esencial para confiar en la base de evidencia obtenida mediante estos enfoques. Los métodos de aprendizaje automático estadístico son uno de los fundamentos de esta tesis. Más del 50% de los fármacos en uso hoy en día tienen como ¿diana¿ apenas cuatro familias clave de proteínas, de las que un 30% corresponden a la super-familia de los G-Protein Coupled Receptors (GPCR). Los GPCR regulan la funcionalidad de la mayoría de las células y son el objetivo central de la tesis. Se desconoce la estructura 3D de la mayoría de estas proteínas, pero, en cambio, hay mucha información disponible de sus secuencias de amino ácidos. El agrupamiento y clasificación automáticos de los GPCR en familias, y de éstas a su vez en subtipos, en base a sus secuencias, pueden contribuir de forma significativa a dilucidar aquellas de sus propiedades de interés farmacológico. No hay forma biológicamente relevante de representar las secuencias simbólicas de las proteínas mediante vectores reales. Esto no impide que se puedan analizar con métodos adecuados. Entre estos se cuentan las técnicas provenientes del aprendizaje automático estadístico y, en particular, los métodos kernel. Por otro lado, la visualización de secuencias de proteínas de alta dimensionalidad puede ser una herramienta clave para la exploración y análisis de las mismas. Es por ello que el objetivo central de la investigación descrita en esta tesis se puede desdoblar en dos grandes líneas: primero, el diseño de métodos centrados en la visualización y basados en la inteligencia artificial para el análisis de los datos secuenciales correspondientes a los GPCRs y, segundo, la aplicación de los métodos desarrollados a problemas de farmacoproteómica tales como la subtipificación de GPCRs y el análisis de proteinas no-alineadas.</field>
</element>
</element>
</element>
<element name="format">
<element name="extent">
<element name="en_US">
<field name="value">211 p.</field>
</element>
</element>
<element name="mimetype">
<element name="none">
<field name="value">application/pdf</field>
</element>
</element>
</element>
<element name="language">
<element name="iso">
<element name="en_US">
<field name="value">eng</field>
</element>
</element>
</element>
<element name="publisher">
<element name="none">
<field name="value">Universitat Politècnica de Catalunya</field>
</element>
</element>
<element name="rights">
<element name="license">
<element name="none">
<field name="value">ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</field>
</element>
</element>
<element name="accessLevel">
<element name="none">
<field name="value">info:eu-repo/semantics/openAccess</field>
</element>
</element>
</element>
<element name="source">
<element name="none">
<field name="value">TDX (Tesis Doctorals en Xarxa)</field>
</element>
</element>
<element name="subject">
<element name="other">
<element name="en_US">
<field name="value">Àrees temàtiques de la UPC::Informàtica</field>
</element>
</element>
<element name="udc">
<element name="en_US">
<field name="value">004</field>
</element>
</element>
</element>
<element name="title">
<element name="en_US">
<field name="value">A computational intelligence analysis of G proteincoupled receptor sequinces for pharmacoproteomic applications</field>
</element>
</element>
<element name="type">
<element name="none">
<field name="value">info:eu-repo/semantics/doctoralThesis</field>
<field name="value">info:eu-repo/semantics/publishedVersion</field>
</element>
</element>
<element name="embargo">
<element name="terms">
<element name="en_US">
<field name="value">cap</field>
</element>
</element>
</element>
</element>
<element name="bundles">
<element name="bundle">
<field name="name">TEXT</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">TMICD1de1.pdf.txt</field>
<field name="originalName">TMICD1de1.pdf.txt</field>
<field name="description">Extracted text</field>
<field name="format">text/plain</field>
<field name="size">269091</field>
<field name="url">https://www.tdx.cat/bitstream/10803/458380/3/TMICD1de1.pdf.txt</field>
<field name="checksum">58bcd529e6a0c83381716a67534b81cd</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">3</field>
<field name="drm">open access</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">ORIGINAL</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">TMICD1de1.pdf</field>
<field name="originalName">TMICD1de1.pdf</field>
<field name="format">application/pdf</field>
<field name="size">11183896</field>
<field name="url">https://www.tdx.cat/bitstream/10803/458380/1/TMICD1de1.pdf</field>
<field name="checksum">ae1d7beb0b0c4da1faae8a7d53e15ada</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">1</field>
<field name="drm">open access</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">MEDIA_DOCUMENT</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">TMICD1de1.pdf.xml</field>
<field name="originalName">TMICD1de1.pdf.xml</field>
<field name="description">Document Consulta</field>
<field name="format">text/xml</field>
<field name="size">106</field>
<field name="url">https://www.tdx.cat/bitstream/10803/458380/2/TMICD1de1.pdf.xml</field>
<field name="checksum">c6fa8134b2cc3363eed6236e67330050</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">2</field>
<field name="drm">open access</field>
</element>
</element>
</element>
</element>
<element name="others">
<field name="handle">10803/458380</field>
<field name="identifier">oai:www.tdx.cat:10803/458380</field>
<field name="lastModifyDate">2023-06-10 08:50:02.253</field>
<field name="drm">open access</field>
</element>
<element name="repository">
<field name="name">TDX (Tesis Doctorals en Xarxa)</field>
<field name="mail">pir@csuc.cat</field>
</element>
</metadata>